Clustering

CS/DSA 5970: Machine Learning Practice
Unsupervised Learning

• Building models that capture the distribution of samples in some high-dimensional space
• So far, we have focused on projecting these feature vectors into some lower-dimensional space
 – Non-linear case: attempted to translate the non-linear manifolds into linear ones
• Useful for better understanding the underlying data & as a basis for preprocessing data
Clustering

• Fundamental idea: we want to infer which samples are similar enough to be considered the same as one-another
• Like classification, this allows us to assign a discrete label to each of our samples
• But: the clustering algorithm determines the labels automatically
Clustering algorithms/hyper-parameter choices vary:

• What do we mean by **similar**?
 – How do we measure distance / similarity?

• How similar do two things need to be so that they are considered to be in the same cluster (class)?

• Is the number of clusters fixed or variable?
Clustering

A couple perspectives:
• Represents a form of dimensionality reduction: translating some N-dimensional feature vector into a single enumerated value
• In the simplest cases, we are identifying zero-dimensional manifolds (blobs) in the feature space
 – More advanced methods look at more interesting manifolds
Clustering

- **K-Means:**
 - Euclidean distance
 - Fixed number of clusters
 - Each cluster effectively has the same shape

- **Mixture Models:**
 - Use a probability density function as a similarity metric
 - Fixed number of clusters
 - When the PDF includes covariance, then we can handle interesting (local) manifold shapes
K-Means Clustering

CS/DSA 5970: Machine Learning Practice
K-Means Clustering

- Predefine the number of clusters (K)
- Each cluster is parameterized by its center location in the N-dimensional feature space
- Initialize the centers of each cluster in some way
- Repeat:
 - Measure the distance (or similarity) between each sample and each cluster center
 - Assign membership of each sample to a cluster
 - Membership can be hard or soft
 - Update the cluster centers to reflect the member samples
Initialization

Variety of initialization options for the cluster centers:

• Distribution-based: pick centers randomly from within the feature space
 – Uniform sampling
 – Construct a Gaussian distribution over the training set and sample from this distribution

• Sample-based: pick K samples uniformly from the training set
Hard-Boundary Classification

- Each sample is assigned to the cluster that is closest to it
- Even if it is far away from the cluster center…
drawing
Soft-Boundary K-Means Clustering

CS/DSA 5970: Machine Learning Practice
Soft K-Means Clustering

Hard boundaries:

• Label is all-or-nothing

• For cluster mean updates: samples near the boundary are just as important as samples far away from the boundary
 – Though, we may be less sure about their “true flavor”

• Easy for the learning algorithm to get into a cycle where a repeatedly pops from one side of the boundary to another
Soft Boundary K-Means Clustering

• Model each sample as probabilistically belonging to each class
 – Probabilistic labels!
• Each sample then contributes to the cluster mean proportionally to this probability
drawing
Soft Boundary K-Means Clustering

• A sample near the boundary between two clusters contributes to both cluster means
 – The balance does not change very much as the sample crosses the boundary

• More stable learning

• Hyper-parameter: beta
 – Small: all classes have interesting probabilities for a given sample
 – Large: one class gets most of the probability
Example 1: K-Means Clustering

CS/DSA 5970: Machine Learning Practice
Example 1: K-Means Clustering

• Scikit-Learn: hard boundary implementation
Live demo
Example 2: K-Means Clustering

CS/DSA 5970: Machine Learning Practice
Example 2: K-Means Clustering

Arrow data set:

• Different parts of the feature space have very differently shaped manifolds

• Variation in the dimensionality (1 vs 2)

• Variation in the sparsity
Live demo
Multi-Dimensional Gaussian Probability Density Functions

CS/DSA 5970: Machine Learning Practice
Representing Clusters

• K-Means Models: similarity metric is spherical:
 – All feature dimensions are treated in the same way
 – No acknowledgement of covariance of features

• What we want:
 – Cluster shapes that acknowledge local manifold structure
 – Some features may vary more than others
 – Some features may covary with others
Multi-Dimensional Gaussian Probability Density Functions

• Density function: given a sample in an N-dimensional space, what is the likelihood of this sample?
• Point in question is N-dimensional
• Output is still a scalar (it is a likelihood)
• We can explicitly capture:
 – Different variances for the different features
 – Covariance across features
Drawing…
Mixture Distributions

CS/DSA 5970: Machine Learning Practice
Mixture Distributions

• Gaussian distributions:
 – All samples are centered around a single mean
 – Likelihood of observing samples drops as we move away from the mean
 – Allow us to represent a single cluster of samples

• But:
 – Many data sets have distinct clusters
 – Gaussian distribution does not capture these situations well
Learning Gaussian Mixture Distributions

CS/DSA 5970: Machine Learning Practice
Learning Gaussian Mixture Distributions

• Given a data set, we need to estimate:
 – Means for all K clusters
 – Covariance matrices for all K clusters
 – Weights

• There is no closed form solution

• But, like soft boundary K-means, we can take an iterative approach
Learning Gaussian Mixture Distributions

Algorithm outline:
1. Guess at the mixture model parameters
2. Probabilistically assign samples to each cluster
3. Re-estimate the mixture model parameters given the sample assignment
4. Repeat starting with #2
Drawing…
Expectation Maximization Learning Example

CS/DSA 5970: Machine Learning Practice
drawing
Example 1: EM and Mixture Models

CS/DSA 5970: Machine Learning Practice
Example 1: EM and Mixture Models

Five-cluster data set…
Live demo
Example 2: EM and Mixture Models

CS/DSA 5970: Machine Learning Practice
Example 2: EM and Mixture Models

Arrow data set
Live demo
Clustering Wrap-Up

CS/DSA 5970: Machine Learning Practice
Clustering Notes

- Soft Boundary & Mixture Model approaches: use probability density functions to describe the clusters
- Soft Boundary K-Means: models cluster location
 - Circular clusters
- Mixture Model: add scaling and covariance
 - Ellipsoidal clusters
Clustering Notes

• Both methods are iterative in nature
 – Lots of local maxima in our likelihood space

• Final solution depends on what our initial guess is
 – Quality of the final solutions can also vary a lot!

• Typical approach: perform the learning process multiple times and keep the best one
Clustering Notes

Hyper-parameters:

- How to make the initial guesses
- Soft-boundary: beta
- Gaussian mixture model: estimates its own shapes
- All require us to specify the number of clusters ahead of time
Picking the number of clusters:
• We typically try multiple values
• Regularized cost function:
 – Want to maximize the likelihood of our learned model generating our training data
 – Want to also minimize the number of model parameters that we use (so, keep K small!)
 – Common scorer choices: Bayesian Information Criterion (BIC) or the Akaike Information Criterion (AIC)
 • GaussianMixture class provides these!
Mixture Models

- We can move beyond Gaussian distributions (any PDF can be used!)
- Allows us to better match the manifold shapes of our data set
- Can also work in other metric spaces!
 - For example: PDFs describing 3D orientations