
0. Name (2 pts):

CS 2334: Programming Structures and Abstractions
Midterm Exam
Solution Set

Wednesday, October 6, 2010

Problem Topic Max Grade
0 Name 2
1 Object Hierarchies 40
2 Abstract Classes and Interfaces 25
3 Generic Programming and Generics 15
4 Abstract Data Types 20
Total

1

1. Object Hierarchies (40 pts)

Consider the following definition of four classes:

public class A

{
private String name ;

public A (String name) {
this . name = name ;

}

public String toString () {
return (”A: ” + name) ;

} ;
}

public class B extends A

{
protected String name ;

public B (String name) {
super (”SUPER−B”) ;
this . name = name ;

}

public String toString () {
return (”B: ” + name + ” ; ” + super . toString ()) ;

} ;
}

public class C extends A

{
private B b ;

public C (String name) {
super (name) ;
b = new B (”subB”) ;

} ;

public String toString () {
return (”C: ” + super . toString () + ” , ” + b) ;

} ;
} ;

public class driver

{
public stat ic void main (String args []) {

A [] objects = new A [4] ;

objects [0] = new A (” foo ”) ;
objects [2] = new C (”baz”) ;

for (int i = 0 ; i < objects . length ; ++i) {
System . out . println (objects [i]) ;

} ;
} ;

} ;

2

(a) (15 pts) Draw the corresponding UML diagram. Include all variables, methods and
relevant relations.

driver

−name: String

+A(name: String)
+toString(): String

B

−b: B

+C(name: String)
+toString(): String

C

+main(args: String[]):void

#name: String

+toString():String
+B(name: String)

A

1

1

(b) (15 pts) What output does executing the driver class produce?

A : foo

null

C : A : baz , B : subB ; A : SUPER−B
null

(c) (10 pts) For each line of code below, indicate one of the following:

� the compiler will reject the line (REJECT),

� the compiler will not reject the line but there will be a run-time error (RUN-

TIME), or

� the compiler will not reject the line and there will be no run-time error (OK).

3

A a1 = new A (” foo ”) ; // ACCEPT: Al l A ' s are A ' s

C c = new C (”baz”) ; // ACCEPT: Al l C ' s are C ' s

A a2 = new C (”bar”) ; // ACCEPT: Al l C ' s are A ' s

B b2 = a1 ; // REJECT: Not a l l A ' s are B ' s

B b3 = c ; // REJECT: C ' s are not B ' s

C c3 = (C) a1 ; // RUNTIME: This A i s not a C (though
other A ' s could be)

4

2. Abstract Classes and Interfaces (25 pts)

(a) (10 pts) Briefly explain the distinction between abstract methods defined by an
abstract class and the methods defined by an interface.

The answer I was looking for: There is no distinction. Both types of abstract methods
are contracts for what child classes must implement.

There was one very technical answer that I also accepted: interface methods cannot
be of default/protected visibility (whereas abstract methods can be). Interfaces are
all about making guarantees about what methods are provided to other classes. It
therefore only makes sense for the methods to be declared as public

(b) (5 pts) True or False and briefly explain: a method defined by an abstract class must
be implemented by a child of that class.

False. However, if the child does not implement an abstract method, then is must
also be declared as an abstract class.

(c) (10 pts) Give two reasons why Comparable is an interface and not an abstract class.

i. Does not define (or need to define) any instance variables.

ii. Many different types of objects should be Comparable, even though they may
have no other similarities.

iii. Because a class in Java may only extend one other class, making Comparable an
abstract class would severely limit the possible relationships with other classes.

iv. Comparable represents a weak is-a (or is-kind-of-a) relationship, so it does not
warrant becoming an abstract class.

5

3. Generic Programming and Generics (15 pts)

Consider the following method prototypes and variable definitions:

public stat ic <T> boolean find1 (GenericQueue<T> q , T key) ;

GenericQueue<Number> a1 = new GenericQueue<Number>(5) ;
GenericQueue<Integer> a2 = new GenericQueue<Integer >(10) ;

Number v1 = new Integer (42) ;
Integer v2 = new Integer (24) ;

(a) (10 pts) Indicate whether the Java compiler will REJECT or ACCEPT each of
the following lines. Briefly explain why or why not.

find1 (a1 , v2) ; // Accept : imp l i c i t upcast o f v2 to Number

find1 (a2 , v1) ; // Not accept : not a l l numbers are i n t e g e r s

find1 (a2 , v2) ; // Accept : a l l I n t e g e r s are I n t e g e r s

.

(b) (5 pts) True or False: The type parameters for generic classes are only checked at
compile time.

True. Type parameters are lost during the compilation process and hence cannot be
checked at runtime (see the “type erasure” discussion).

6

4. Abstract Data Types (20 pts)

The GenericQueue that we implemented in class captures the notion of a “line”
of objects: new objects are inserted at the end of the line and objects are removed
from the beginning of the line. A deque stands for a “double ended queue” in which
new objects can be added to either the end or beginning of the line. Furthermore,
removed objects can come from either the end or beginning of the line.

As a reminder, here are the properties of GenericQueue (note that they are now
protected):

public class GenericQueue<T>

{
protected T list [] ;
protected int front ; // Next ob j e c t to re turn
protected int back ; // Next s l o t to i n s e r t a new ob j e c t

}

Fill in the requested method implementation below.
Hints: the value of −1%N is −1.

public class GenericDeque<T> extends GenericQueue<T>

{
public GenericDeque (int size) {

super (size) ;
} ;

// Remove obj from the end o f the queue
//
// Return = nu l l i f the queue i s empty
// = the ob j e c t at the end o f the queue
//
// Post : I f queue has an ob j e c t in i t , then :
// 1 . The number o f ob j e c t s in the queue i s decreased by one
// 2 . The element at the back o f the queue i s removed
//

public T removeBack () {
// I s the queue empty?
i f (isEmpty ()) return null ;

// Move the back po in t e r : remember that ' back ' i s the
// *next* f r e e space
back = (back − 1 + list . length) % list . length ;

// Return the ob j e c t at the back
return (list [back]) ;

}
}

Note: the above implementation has been changed to reflect the changes made on
the board during the exam.

7

