Project 1: Addressing Multiple Digital Lines
Questions?
Project 1

• Hardware:
 • Wire in a set of LEDs
 • Leave room for future components
 • Reserve some pins for future use

• Software:
 • Provide interface functions for the LEDs
 • Write a test loop() function
Project 1: Heading Display

4 LEDs in a circle:
• Represent heading with 8 different illumination patterns
 • Equally space around the circle
• Interface function:
  ```c
  void display_orientation(float theta)
  • Orientation is between -180.0 and 180.0 degrees
  • Left-handed coordinate system
  • Do not deviate from this specification!
Project 1: Heading Velocity Display

10 LEDs in a line (use bar graph):
• Represent orientation velocity
• Pairs of LEDs are connected to a single digital pin
  • Each LED of a pair should have its own resistor!
• Interface function:
  void display_orientation_velocity(float velocity)
  • Velocity is a value between -300.0 and 300.0 deg/sec
  • Illuminate the center pair of LEDs if rate is near zero
Project 1: Test Function

- Add switch to circuit
- In `loop()`
  - One switch state:
    - Increment a simulated orientation from -179 to 180
    - Display orientation
    - If heading exceeds 180, reset to -179
  - Other switch state:
    - Increment orientation velocity from -300 to 300
    - Display
    - If velocity reaches beyond 300, reset to -300
Code Specifications as Contracts

• You are implementing code that will be used for future projects and by your other group members

• Implement exactly the functions that we ask for
  • Name of function must be as specified
  • Parameter types and names must be as specified
  • Return values must be as specified
Documentation

Project-level documentation (top of each C (and H) file)

- Project #
- Date
- Group number
- Group members
- Group member responsible for the software
Documentation

Function-level documentation:

• Summarize what the function does in a sentence or two
  • This is for future users of your function

• Explicitly document the **inputs** (parameters) and **outputs** (return values) of the function
  • Include variable names and meaning of the variables, including units!
  • Discuss any other effects that the function has (e.g., changing pin state)

• The specification links to an example
Documentation

• In-Line documentation:
  • Document the *meaning* of individual lines of code or small groups of lines
  • Document what you are doing and why

• See the project 1 specification for a link to an example
Project Groups

• Use assigned groups
• For each project, one person must take the lead on the software
Due by the Project Deadline

• Documented code ("ino" files) checked-in to the Dropbox tree
  • Useful for sharing with us and with your group members

• Demonstration/code review with me or the TA
  • Complete by Tuesday following the deadline
  • If completed before the deadline, then you may make changes for an improved grade
Due Shortly after the Project Deadline…

Personal Report: Catme will ask you to fill out a survey

• This will be used to provide feedback to you and your group members

• I will also use this to detect asymmetries in group member participation
Grading

Personal programming component:
• Each group member must collect 3 personal programming components over the semester
• One is available for each of the 10 projects
• Grading is generally binary (completed or not)
• A programming component will not count as yours if another group member must make substantial changes to the code in order to complete the project
Grading II

Group grade

• Assess circuit, program, functionality and documentation
• See the posted rubric for details

• In most cases, the group grade will be given to each group member
  • In cases of significant, repeated asymmetries, grades will be rebalanced to reflect relative contributions
Hardware in Lab

Bin in the lab has:
• Spare parts
• Tools

Battery chargers are installed already
• Keep your batteries in a good state
• Do not change the settings on the chargers (they are LiPo batteries!)