Embedded Real-Time Systems (AME 3623) Quiz 2 Solutions

April 26, 2007

Given the following circuit of a digital-to-analog converter:

What is $V_{\text {out }}$ as a function of digital values C_{0}, C_{1}, and C_{2} ? Assume that the C_{i} is a digital value (0 or 1), and that the current down the $V_{\text {out }}$ leg of the circuit is zero.

Ohm's Law gives us:

$$
\begin{aligned}
5 C_{0}-V_{\text {out }} & =R I_{0} \\
5 C_{1}-V_{\text {out }} & =2 R I_{1} \\
5 C_{2}-V_{\text {out }} & =4 R I_{2}
\end{aligned}
$$

Kirkoff's Current Law gives us:

$$
\sum_{j=0}^{2} I_{j}=0
$$

Combining these equations gives us:

$$
\sum_{j=0}^{2} \frac{5 C_{j}-V_{\text {out }}}{R 2^{j}}=0
$$

Therefore:

$$
\begin{aligned}
V_{\text {out }} & =\frac{5 \sum_{j=0}^{2} \frac{C_{j}}{2^{j}}}{\sum_{j=0}^{2} \frac{1}{2^{j}}} \\
& =\frac{5}{7}\left(4 C_{0}+2 C_{1}+C_{2}\right)
\end{aligned}
$$

(note that C_{0} is the "most significant bit" (it affects $V_{\text {out }}$ the most of all the bits)

