Basic Notions on MongoDB Administration

Dimitris Diochnos

Edinburgh, December 12, 2014

Abstract

The aim of this document is to give a brief overview of MongoDB as well as try to cover basic CRUD
(Create, Retrieve, Update, Delete) operations using the Mongo shell.
1 Introduction

MongoDB is a NoSQL document-oriented database. BSON (binary JSON), which is a binary serialization
format, is used to store documents and make remote procedure calls in MongoDB. The BSON specification is
located at http://bsonspec.org.

1.1 Data Types

The traditional JSON data types are available in MongoDB as well. These are the following.

« strings + booleans . arrays

« numbers « null + objects/documents

Apart from the above, MongoDB allows the following data types as well.

Objectld. The Objectld data type. Every MongoDB document has an _id property which is used as the pri-
mary key for indexing. Unless specified otherwise by programmers, this is of type ObjectId.

Date. A data type for storing dates. Note that such a data type is not supported on JSON.

BinData. A data type for binary data; e.g. pictures, videos, etc.

1.2 Storage

Consider the following JSON document

{
"day": 12,
"month": "December"

Its serialization as a BSON document looks like the one below.

’ doc size \ dt; : int32 \ day\0 \ 12 \ dts : string \ month\0 \ 9 \ December\0 \ [‘
32 bits 8 bits 4 bytes 32 bits 8 bits 6 bytes 32 bits 9 bytes EOD

http://bsonspec.org

2/12 Basic Notions on MongoDB Administration Dec 12, 2014

1.2.1 Size of Documents

Default. By default MongoDB supports documents of size up to 16 MBytes.

GridFS. GridFS can be used for storing documents of larger size; e.g. 100 TBytes - i.e. documents that can not
be stored even on a single server. No limit on document size.

1.3 Communication

The basic communication is shown in Figure 1. Client applications are using a Mongo-driver that is responsible

MongoDB Server query Client App

A

/""—_—‘\ BSON

Convert to
i language
specific

object

_____-—-/ \ BSON

Figure 1: Communication between client applications and the MongoDB server.

for the communication and the translation of the requests between the client and the server.

1.4 Hierarchy

We can observe the following hierarchy.

mongo cluster
< databases
< collections
< documents (BSON/JSON)

2 Obtaining and Installing MongoDB

We can obtain the latest version of MongoDB from the MongoDB website in the address
http://www.mongodb.org/downloads .

Once we download and store MongoDB in an appropriate directory (e.g. under /opt/mongo/), we just need

to make sure that the bin subdirectory is added to our path for convenience.

3 Learning MongoDB and MongoDB Documentation

MongoDB has an extensive documentation online: http://docs.mongodb.org/manual/ .

http://www.mongodb.org/downloads
http://docs.mongodb.org/manual/

Dec 12, 2014 Basic Notions on MongoDB Administration 3/12

3.1 MongoDB University

Moreover, there are online courses offered by the MongoDB university (http://university.mongodb.com).
Some of the above courses are free and some are not. They typically require about 6-8 hours of work per week
and in the end, upon successful completion, one can also obtain a certificate issued by the MongoDB university,
which can be a nice addition to one’s resume.

4 The MongoDB Daemon

We can start the MongoDB server with the following command.
$ mongod

The default port where the server is running is 27017. The default directory where the database stores content
is under /data/db/. These options can be parameterised; for example the command

$ mongod --dbpath /home/user/db --port 9001 --rest --httpinterface

starts the MongoDB server using the directory /home/user/db, listening to port 9001, and moreover enables
a simple REST api that can be used in conjunction with a monitoring http interface. Note that the http interface
is available on the port where the server is running plus 1000; thus in this particular case, one should point the
browser at the address http://localhost:10001. For more information on the parameters of the MongoDB
daemon we can give the following command.

$ mongod --help

5 The Mongo Shell

The Mongo shell is used for interacting with a MongoDB server and perform administrative tasks. The Mongo
shell is interpreting Javascript code. The following code opens a Mongo shell without connecting to any
database, sets a variable a to be equal to the current date, and then prints the ISO date string, as well as the
number of milliseconds that have elapsed since Jan 1, 1970.

$ mongo --nodb

MongoDB shell version: 2.6.5

> var a = new Date()

> a
ISODate("2014-12-11T22:35:37.216Z")
> a.getTime()

1418337337216

> ~d

bye

$

5.1 Connecting to a MongoDB Server

Assuming that a MongoDB server is running on host with IP x.y.z.w one can connect through the Mongo
shell on that server using the command

$ mongo x.y.z.w

http://university.mongodb.com

4/12 Basic Notions on MongoDB Administration Dec 12, 2014

In particular, we can also specify the database to which we want to connect to and perhaps load some Javascript
files where we have defined some functions that can be useful for performing various administrative opera-
tions. The code below gives an example where we connect to the database agents on localhost at port 9001
and also load the code from the files filel. js and file2. js.

$ cat filel.js
function £ () {
// Note that we use print instead of console.log
print("Hello from function f defined in file filel.js!");
}
$ cat file2.js
function successor(a) {
return a+1;
}
$ mongo --shell localhost:9001/agents filel.js file2.js
MongoDB shell version: 2.6.5
connecting to: localhost:9001/agents
type "help" for help
loading file: filel.js
loading file: file2.js
> £0)
Hello from function f defined in file filel. js!
> successor(12)
13
>"d
bye
$

For more information on the parameters that we can pass on mongo we can use

$ mongo --help

5.2 Basic Orientation and Getting Help
Let us attempt to acquire a Mongo shell again on localhost.

$ mongo --shell --port 9001
MongoDB shell version: 2.6.5
connecting to: 127.0.0.1:9001/test
type "help" for help

>

5.2.1 Basic Orientation

The comments on the lines give a brief explanation of the command. Note that the following commands are
valid since the comments are valid Javascript comments.

> show dbs // present all the database names; test not created yet
admin (empty)

local 0.078GB

> db // show the database that we are using

test

Dec 12, 2014 Basic Notions on MongoDB Administration 5/12

> use local // use the database named “local'
switched to db local
> show collections // show the collections of this database

startup_log
system.indexes

> db.startup_log.count() // count the number of docs in the collection “startup_log'
1
> db.startup_log.find() // find all documents in the collection startup_log
{ ... omitting the output ... }
> db.startup_log.find() .pretty() // present the result in a user-friendly way
{
omitting the output again ...
}
> db.startup_log.findOne() // find just one document; it will be prettified
{
omitting the output again ...
}
> cls // clear screen

5.2.2 Getting Help

We can attempt to get some help with the following command.

> help
db.help() help on db methods
db.mycoll.help() help on collection methods
omitting the rest of the output
>

The first two lines of the output indicate two more help commands. One providing help on commands at the
level of databases, and one more providing help on the commands at the level of collections. Below we switch
back to our test database and then we request help on the methods that are available on the database and a
collection called mycollection.

> use test

> db.help() // help for commands that we can use with databases
omitting the output

> db.mycollection.help() // help for commands that we can use with collections
omitting the output

> ~d

6 Importing Data

We can import JSON, CSV and TSV files into a collection of MongoDB using the command mongoimport. We
can specify the database where the data is going to be imported with the —-db parameter, while the collection
is selected with the -—collection parameter. Moreover, with the -~—stopOnError parameter we can request
the import operation to stop on the first error. Finally, we can specify the host and the port with the --host
and --port parameters.

$ cat fall2014.json
{"date": "10/31/2014", "speaker": "Paolo", "kind": "talk", "title": ... }

6/12 Basic Notions on MongoDB Administration Dec 12, 2014

{"date": "11/07/2014", "speaker": "Pavlos", "kind": "talk", "title": ... }
{"date": "11/14/2014", "speaker": "Nico", "kind": "talk", "title": ... }
{"date": "11/21/2014", "speaker": "Orestis", "kind": "talk", "title": ... }
{"date": "11/28/2014", "speaker": "Steven", "kind": "talk", "title": ... }
{"date": "12/12/2014", "speaker": "Dimitris", "kind": "tutorial", "title": ... }

$ mongoimport --host localhost --port 9001 --stopOnError --db agents \
> --collection fall2014 < fall2014_withIDs. json

connected to: localhost:9001

2014-12-12T08:58:17.979+0000 imported 6 objects

$

7 Dropping Collections and Databases

Once we connect to a MongoDB server using the Mongo shell, we can drop collections or even entire databases
using the following commands.

> use agents
switched to db agents

> db.fall2014.drop() // drops collection “fall2014'

true

> db.dropDatabase () // drops the entire ~“agents' database
{ "dropped" : "agents", "ok" : 1 }

>

8 Queries

We can specify the properties of our queries using JSON documents.

8.1 Limit, Skip and Sort

Apart from specifying the actual queries, there are times that we want to limit our results, skip some results,
or even sort them in a specific way. We will use the ‘fall2014° collection that we created earlier. Recall that we
can see all the documents in the collection using the command

> db.fall2014.find() // db.fall2014.find().pretty() for prettified output

We can now use 1imit, skip, and sort all at the same time. For example, suppose we want to sort the results
in inverse chronological order, skip the first one, and limit the output to 2 documents. Then the following
command suffices.

> db.fall2014.find() .1imit(2) .skip(1) .sort({"date": -1})

{ "_id" : 5, "date" : "11/28/2014", "speaker" : "Steven", "kind" : "talk", ... }
{ "_id" : 3, "date" : "11/21/2014", "speaker" : "Orestis", "kind" : "talk", ... }
>

Notice that for sorting we passed a JSON object specifying the field (date) that we want to use for sorting
the data, and moreover with the -1 we indicated that we want the results to be sorted in descending order. We
could use 1 to sort the documents in ascending order.

Finally, note that the above example is for demonstration purposes only. We have actually sorted the
documents in descending order while we were using lexicographical ordering. We will verify this soon below.

Dec 12, 2014 Basic Notions on MongoDB Administration 7/12

8.2 Simple Queries

Assume we want to find all the documents where the speaker is Pavlos. We could perform the following
query.

> db.fall2014.find ({"speaker": "Pavlos"})

{ "_id" : 1, "date" : "11/07/2014", "speaker" : "Pavlos", "kind" : "talk", ... }
> db.fall2014.find ({"speaker": "Pavlos"}).count() // use count to enumerate
1

>

Note that above we used double quotes for the word speaker. We could have omitted the quotes and we
would still get the same result. Actually, we can use count directly.

> db.fall2014.count ({speaker: "Pavlos"})
1
>

However, it is a good practice to include the quotation marks. For example, assume we can find in our collection
a document that looks like the one below.

{
"_id" : 8,
"date" : "12/12/2014",
Ila|| . {
llbll . IIblurbll s
llC" . {
llkll . 1
b
b
b

Then, in order to achieve an actual match using properties of subdocuments we need to list those properties
inside double quotes. Thus, we can identify the document in the collection with a find command that has the
following format.

> db.fall2014.find({"a.c.k": 1})
{ Il_idll . 8, ||date" . ll12/12/2014||’ llall : { llbll : ||blurb||, IIC" : { Ilk" . 1 } } }
8.3 Operators for Queries

In order to perform more complex queries we can use the operators that are shown in Table 1.
Below are some example queries.

db.fall2014.find({"date": {$exists: truel}}).count() // count docs where date exists
db.fall2014.find({"date": {$exists: false}}).count() // ... where date does not exist

db.fall2014.find({"date": {$1t : "11"}}) // find docs where date is less than "11"
"_id" : 2, "date" : "10/31/2014", "speaker" : "Paolo", "kind" : "talk", ... T

// Find docs where the date is less than "11" or greater than or equal to "12"
db.fall2014.find ({$or: [{"date": {$1t: "11"}}, {"date": {$gte: "12"3}}] })

VvV VV AV OV OV

8/12 Basic Notions on MongoDB Administration Dec 12, 2014

’ operator | meaning
$gte greater than or equal
$lte less than or equal
$gt greater than
$lt less than
$or logical or
$and logical and (implicit by commas in JSON)
$in € operator
$nin ¢ operator
$exists | match docs where a property exists

Table 1: Operators used for queries.

"_id" : 2, "date" : "10/31/2014", "speaker" : "Paolo", "kind" : "talk", ... }

"_id" : 4, "date" : "12/12/2014", "speaker" : "Dimitris", "kind" : "tutorial", ... }
db.fall2014.find({$and: [{"date": {$1t: "11"}}, {"date": {$gte: "12"}}]1 }) // and ...
db.fall12014.find({date: {$in : ["11/21/2014", "11/28/2014"]1}}) // $in operator
"_id" : 3, "date" : "11/21/2014", "speaker" : "Orestis", "kind" : "talk", ... }
"_id" : 5, "date" : "11/28/2014", "speaker" : "Steven", "kind" : "talk", "... }

// Common types: double: 1, string: 2, object: 3, array: 4, boolean: 8, int32: 16
db.fall2014.find({"date": {$type: 2}}).count()

db.fall2014.find({"date": {$type: 1}}).count()

VvV OVO®OV VVAAYV V VYV AAS

8.4 Projections

In some cases we do not want the full output, but rather certain fields from the search results. We can pass
a second argument to the find method thus indicating with a 0/1 entry whether we want a specific field to
appear among the results. Below we have an example with the dates and the speakers in each case.

> db.fall2014.find({}, {date: 1, speaker: 1, _id: 0}).sort({"date": 13})
{ "date" : "10/31/2014", "speaker" : "Paolo" }

{ "date" : "11/07/2014", "speaker" : "Pavlos" }

{ "date" : "11/14/2014", "speaker" : "Nico" }

{ "date" : "11/21/2014", "speaker" : "Orestis" }

{ "date" : "11/28/2014", "speaker" : "Steven" }

{ "date" : "12/12/2014", "speaker" : "Dimitris" }

>

8.5 Results in an Array

The method find typically returns multiple results that satisfy our query criteria. In order to get the results of
a find method as an array we can use the toArray method together with find. Thus we can store the results
in a variable and perhaps iterate through them on the shell. Below we have an example.

Dec 12, 2014 Basic Notions on MongoDB Administration 9/12

> var res = db.fall2014.find({}, {"_id": O, "date": 1, "speaker": 1})

> var res = db.fall2014.find({}, {"_id": 0, "date": 1,
. "speaker": 1}).sort({"date": 1}).toArray()

> res.length

6

> res[3]

{ "date" : "11/21/2014", "speaker" : "Orestis" }

>

8.6 Explanations and Indices

Suppose we want to find the document that has _id equal to 5. Then we can give the following command.

> db.fall2014.find({"_id": 5})
{ "_id" : 5, "date" : "11/28/2014", "speaker" : "Steven", "kind" : "talk", ... }
>

MongoDB provides an explanation service for the queries that we are making, and it can be called with the
function explain.

> db.fall2014.find({"_id": 5}).explain()

{
"cursor" : "IDCursor",
"n" : 1,
"nscannedObjects" : 1,
"nscanned" : 1,
// omitting stuff

}

> db.fall2014.find({"date": "11/28/2014"}) .explain()

{
"cursor" : "BasicCursor",
"n" 1,
"nscannedObjects" : 6,
"nscanned" : 6,
// omitting stuff

}

>

In the output above perhaps the most important entries are cursor, n, nscanned and nscannedObjects
Cursors are the objects that are returned from search queries and essentially they are used so that we can
iterate through them and view all the matching results. More information is available on the MongoDB docu-
mentation website. Regarding the rest we have: n is the number of documents that match the query selection
criteria, nscanned is the total number of index entries scanned (or documents for a collection scan), and
nscanned0bjects is the total number of documents scanned

Note that in the second case we have just a basic cursor, and thus all the documents in the collection had
to be scanned. We can however create an index on date using the command ensureIndex. The parameter
of ensureIndex is an expression which indicates which fields we want to include for this index as well as
whether we want to sort the documents in ascending or descending order. Ascending and descending order
is indicated with 1 and -1 just like in the case of sorting that we saw earlier. Optionally, we can pass a second
argument with additional options. Thus the following command creates an index on the property date in
descending order and is given an appropriate name. Then we verify that the index has been created using the
getIndices method.

10/12 Basic Notions on MongoDB Administration Dec 12, 2014

> db.fall2014.ensureIndex({"date": -1}, {"name": "dates in descending order"})
{

"createdCollectionAutomatically" : false,
"numIndexesBefore" : 1,
"numIndexesAfter" : 2,
"ok" : 1
}
> db.fall2014.getIndices()
[
{
R A A
"key" : { "_id" : 1 },
"name" : "_id_",
"ns" : "agents.fall2014"
},
{
"v"' o1,
"key" : { "date" : -1 },
"name" : "dates in descending order",
"ns" : "agents.fall2014"
}
]
>

If we now attempt to get an explanation for our query we can see that a B-tree index has been generated
(look at the cursor) and only one document was actually scanned.

> db.fall2014.find({"date": "11/28/2014"}) .explain()

{
"cursor" : "BtreeCursor date_1",
"n" : 1,
"nscannedObjects" : 1,
"nscanned" : 1,
// omitting stuff

}

>

9 Insertions

We can insert documents in our collection using a command of the following form.
db.<collection name>.insert(<document>)
Below we give an example.

> var a = {"_id": 6, "date": "12/19/2014", "speaker": null}

>

> db.fall2014.insert(a);

WriteResult({ "nInserted" : 1 })

> db.getLastError() // Returns null for no error; string otherwise
null

Dec 12, 2014 Basic Notions on MongoDB Administration 11/12

> db.fall2014.find ({}

{ "_id" : 0, "date" : "11/14/2014", "speaker" : "Nico", "kind" : "talk", ... }

{ "_iq" 1, "date" : "11/07/2014", "speaker" : "Pavlos", "kind" : "talk", ... }

{ "_iq" 2, "date" : "10/31/2014", "speaker" : "Paolo", "kind" : "talk", ... }

{ "_id" : 3, "date" : "11/21/2014", "speaker" : "Orestis", "kind" : "talk", ... }

{ "_id" : 4, "date" : "12/12/2014", "speaker" : "Dimitris", "kind" : "tutorial", ...}
{ " _iq" 5, "date" : "11/28/2014", "speaker" : "Steven", "kind" : "talk", ... }

{ "_iq" 6, "date" : "12/19/2014", "speaker" : null }

>

Note that MongoDB did not complain at all for adding the last document into the collection since it is schema-
less.

10 Updates

We can update entries using commands of the following form.

db.collection.update(
<query>,
<update>,
{
upsert: <boolean>,
multi: <boolean>,
writeConcern: <document>
}
)

+ query refers to the selection criteria for the update.

+ Ifthe <update> document contains only field:value expressions then one matching document will be
replaced entirely. Otherwise, if only modifiers are present, then only the relevant fields will be updated.

+ If upsert is true and no document matches the query criteria, update () inserts a single document.
« If multi is set to true, the update () method updates all documents that meet the <query> criteria.

+ The option writeConcern is beyond the scope of this tutorial.

For example the following command adds a comment to our recent entry.

> db.fall2014.update({_id: 6}, {$set: {"comments": ["Happy holiday!"]11}},

... {upsert: false, multi: falsel})

WriteResult ({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

> db.fall2014.find({_id: 6})

{"_id" : 6, "date" : "12/19/2014", "speaker" : null, "comments" : ["Happy holiday!"] }
>

10.1 Operators for Updates

In order to perform more complex updates we can use the operators that are shown in Table 2.
Below are some example updates.

12/12

> db.fall2014.

WriteResult ({
> db.fall2014
{ "_id" : 6,
>

> db.fall2014
WriteResult ({

"_id" : 6,

>
{
>
> // addToSet
>
WriteResult ({
> db.fall2014
{ "_id" : 6,

> db.fall2014.

db.fall2014.

db.fall2014.

Basic Notions on MongoDB Administration Dec 12, 2014

’ operator meaning
$set set a field to have a specific value
$unset unset a field
$push push a value into an array
$addToSet | treat the array as a set and attempt to add the element
$pop pop a value
Table 2: Operators used for updates.
update({_id: 6}, {$push: {"comments": "another comment!"}}) // push
"nMatched" : 1, "nUpserted" : 0, "nModified" 13
.find({_id: 6})
., "comments" ["Happy holiday!", "another comment!"] }
.update({_id: 6}, {$pop: {"comments": 1}}) // pop
"nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

find({_id: 6})
., "comments" ["Happy holiday!"] }

below

update({_id: 6}, {$addToSet: {"comments": "another comment!"}})

"nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

.find({_id: 63})

., "comments" ["Happy holiday!", "another comment!"] }
update({_id: 6}, {$addToSet: {"comments": "another comment!"}})

WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 0 })

> // "nModified' indicates that no documents were affected after the second call
> db.fall2014.find({_id: 63})

{ "_id" : 6, "comments" : ["Happy holiday!", "another comment!"] }

>

> db.fall2014.update({_id: 6}, {$unset: {"comments": true}}) // unset
WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" 1D

> db.fall2014.find({_id: 6})

{ " id" : 6, "date" "12/19/2014", "speaker" : null }

>

11 Deletions / Removals

We can delete documents from the collection using a command of the following form.

db.<collection name>.remove(<expression>)

For example we can remove our last entry with the following command.

> db.fall2014.

WriteResult ({

> db.fall2014.

6
>

remove ({"_id": 63})
"nRemoved" 1}
count ()

	Introduction
	Data Types
	Storage
	Size of Documents

	Communication
	Hierarchy

	Obtaining and Installing MongoDB
	Learning MongoDB and MongoDB Documentation
	MongoDB University

	The MongoDB Daemon
	The Mongo Shell
	Connecting to a MongoDB Server
	Basic Orientation and Getting Help
	Basic Orientation
	Getting Help

	Importing Data
	Dropping Collections and Databases
	Queries
	Limit, Skip and Sort
	Simple Queries
	Operators for Queries
	Projections
	Results in an Array
	Explanations and Indices

	Insertions
	Updates
	Operators for Updates

	Deletions / Removals

