N

ACS

Algorithms for Complex Shapes
with Certified Numerics and Topology

Benchmarks and evaluation of experimental
algebraic kernels

Dimitrios loannis Z. Emiris Elias
I. Diochnos ' P. Tsigaridas

ACS Technical Report No.: ACS-TR-243306-02

Part of deliverable: WP-III/D3
Site: NUA
Month: 24

Project co-funded by the European Commission within FP6 (2002-2006)
under contract nr. IST-006413

Benchmarks and evaluation of experimental algebraic
kernels

Dimitrios I. Diochnos* loannis Z. Emiris’ Elias P. Tsigaridas?®

April 17, 2007

Abstract

We present three projection based algorithms for real solving bivariate
polynomial systems, as well as a detailed experimental analysis of their
implementation in our MAPLE algebraic toolbox. Our implementation can
lead to an algebraic kernel in CGAL because all necessary algebraic oper-
ations have been implemented. Finally, our experimental study includes
comparative results with GBRS and three SYNAPS solvers (STURM, SUBDIV
and NEWMAC).

1 Introduction

This report describes our MAPLE implementation and illustrates its capabili-
ties through comparative experiments. Our library is open source software!.
The design of the library is based on object oriented programming and the
generic programming paradigm, common to C++, so as to be easy to transfer
our implementation in C++, in the future.

The core object in our library is the class of real algebraic numbers, that
are represented in isolating interval representations. We provide functionalities
for computing signed polynomial remainder sequences with various algorithms;
real solving univariate polynomials using Sturm’s algorithm; computations with
one and two real algebraic numbers, such as construction, sign evaluation, com-
parison; and, of course, our algorithms for real solving of bivariate polynomial
systems. In order to speed up the computations we have implemented a filter
layer, i.e, computations are performed first using intervals with floating point
arithmetic and, if they fail, then an exact algorithm using rational arithmetic is
called. For GCD computations in an extension field we use the MAPLE package
of [18]. We have not implemented, yet, the optimal algorithms for computing
and evaluating polynomial remainder sequences.

“d.diochnos@di.uoa.gr
femiris@di.uoa. gr

iet@di.uoa.gr

§Currently at LORIA-INRIA Lorraine. Most part of this work was done while at NUA
and INRIA Sophia-Antipolis.

Ywww.di.uoa.gr/ stud1098/STV

2 Computing Sign of a bivariate polynomial.

Following the path from univariate solving we use Sturm Sequences in order to
compute the sign of a polynomial evaluated at a planar Real Algebraic point.
Given o = [A,[AL, AR]|, 8 = [B,[Br,Bg|] and f € Zz,y|, we can compute
the sign of f(a,) as follows. We compute the Sturm Sequence of A and f
wrt variable x. We create two duplicates of the above sequence and evaluate
them at the rational endpoints x = A;, and x = Ap which define a. We then
use Univariate SIGN_AT in order to compute the sign of each polynomial in the
sequence at y = (. Finally, we compute the required sign by enumerating sign
variations in the above polynomial sequences. Assuming deg, (f) = deg,(f) =
ny, deg(A) = deg(B) = ng and L(f) = L(A) = L(B) = 7, the complexity of
the above algorithm is: Op(nn37). The reader may refer to [7] for the details
in the above algorithm and complexity analysis.

3 Bivariate real solving

Let F,G € Z[x,y] be relatively prime and dg(F) = dg(G) = n and L(F) =
L (G) = 0. We present three algorithms and their complexity for real solving
the system F' = G = 0. The main idea behind the algorithms is to project
the roots on the z and y axes, to compute the coordinates of the real solutions
and somehow to match them. The difference between the algorithms is the way
they match the solutions. To project we use resultants and signed polynomial
remainder sequences. The output of the algorithms is a list with pairs of real
algebraic numbers and, if possible, the multiplicities of the solutions.

3.1 The GRID algorithm

Algorithm GRID, is straightforward and its first phase was also used in [19]. We
compute the real algebraic numbers that correspond to the x and y coordinates
of the real solutions, as real roots of the resultants res,(F,G) and res,(F,G).
Then, we match them using BIVARIATE-SIGN_AT by testing all rectangles in this
grid.

The input of the algorithm is the polynomials F,G € Z[z,y| and its out-
put is a list of pairs of real algebraic numbers represented in isolating interval
representation. The algorithm also outputs rational axis-aligned rectangles,
guaranteed to contain a single root of the system.

The complexity of analysis of the algorithm can be found in [7]. The dis-
advantage of the algorithm is that exact implementation of its sub-algorithm
BIVARIATE-SIGN_AT is not efficient. However, its simplicity makes it attrac-
tive and arithmetic filtering can speed up its implementation. The algorithm
requires no genericity assumption on the input; however, it is possible to deter-
ministically compute a shear transformation within the same complexity bound.

Last but not least, the algorithm allows the use of heuristics. In particular,
we may exploit easily computed bounds on the number of roots, such as the
Mixed Volume, which also reflects the sparseness of the equations. More im-
portantly, we can count the real roots with a given abscissa a with application

of Sturm sequences.

Theorem 3.1 Isolating all real roots of the system F' = G = 0 using GRID has
complexity Op(n'* +nt3c + n'072).

We now examine the multiplicity of a root («, 3) of the system. Refer to [3,
sec.I1.6] for its definition as the exponent of factor (fz — ay) in the resultant
of the (homogenized) polynomials, under certain assumptions.

The algorithm reduces to bivariate sign determination and does not require
bivariate factorization. We shall use the resultant, since it allows for multiplic-
ities to “project”. More formally, the sum of multiplicities of all roots (c, 3;)
equals the multiplicity of root z = « in the respective resultant polynomial. It
is possible to apply a shear transform to the coordinate frame so as to ensure
that different roots project to different points on the z-axis. Analysis of the
deterministic shear computation can be found in [7] while previous work on the
problem includes [9, 16, 20].

Lemma 3.2 Computing shear transformation so that the resulting polynomial
system is sufficiently generic, has complexity Op(n°c).

After the application of the shear transformation we can compute the mul-
tiplicities of the roots of the sheared system. Then, we need to match the latter
with the roots of the original system.

Theorem 3.3 Consider the setting of th. 3.1. Having isolated all real roots
of the system F' = G = 0, il is possible to determine their multiplicities with
complezity Op(n'? + ntlo + n'ls?).

3.2 The M_RUR algorithm

M_RUR assumes that the polynomials are in generic position. Then:

Proposition 3.4 [9, 2] Let F, G square-free and co-prime polynomials, in generic
position. If SRj(z,y) = srj(x)y’ +srjj_1(z)y? L+ +sr;0(x), then if (a, B)
is a real solution of the system F = G = 0, then there exists k, such that

sro(a) =+ =sri_1(a) =0, sri(a) #0 and 3 = —%%’(&(f“)

Pr. 3.4 represents the ordinate of a solution in a Rational Univariate Rep-
resentation (RUR) of the abscissa. The RUR applies to multivariate algebraic
systems [4, 14, 5, 15, 6, 2] and generalizes the primitive element method [17],
initiated by Kronecker. Here we adapt it to small-dimensional systems.

The algorithm that we present is similar to the algorithm of [10, 9]. However,
notice their algorithm computes only a RUR of the roots using pr. 3.4, so the
representation of the ordinates remains implicit. If we wish to compute with
these numbers, this representation is not sufficient (we can always compute
the minimal polynomial of the roots [11] in this algorithm, but this is highly
inefficient). We modify the algorithm, so that the output includes isolating
interval rectangles, hence the name modified-RUR (M_RUR).

Our most important difference with [9] is that they represent algebraic num-
bers by Thom’s encoding while we use isolating intervals, which were thought
of having high theoretical complexity. However, this is not the case [7].

We project on the z and the y-axis; for each real solution on the z-axis we
compute its ordinate using pr. 3.4. First we compute the sequence SR(F,G)
wrt y in O B(n° o). The projection on the two axis is similar to GRID algorithm.
The complexity is dominated by real solving the resultants, i.e O B(n'24n10o?).
Let a;, resp. (3;, be the real roots in the x, resp. y axis. Moreover, we compute
rational numbers g; between the 3;’s in Op(n°o):

Q< <q<P2<- < PBro1<q-1<bB<qe, (1)

where ¢ < 2n2. Every Bj corresponds to a unique «;. Notice that the multi-
plicity of «; as a root of R, is the multiplicity of real solution of the system,
that has it as abscissa.

The sub-algorithm COMPUTE_K: In order to apply pr. 3.4, for every «; we
must compute k € N* such the assumptions of the theorem are fulfilled; this
is possible by genericity. We follow [13, 9] and define recursively polynomials

I'j(z): Let ®o(x) = WM and ®;(z) = ged(Pj_1(x),srj(z)) and I'; =
®j-1(z)

B0 for j > 0. Now sr;(z) € Z[z] is the principal subresultant coefficient
of SR; € (Z[z])[y], and ®o(z) is the square-free part of R, = sro(x). By
construction, ®o(z) = [[,; T';(z) and ged(T';,I;) = 1, if j # i. Hence every «; is
a root of a unique I'; and the latter switches sign at the interval’s endpoints.
Then, sro(a) =sri(a) =0,...,srj(a) =0, srjqi(a) # 0; thus k = j + 1.

The sub-algorithm FIND: Finally, we perform matching; the process takes
a real root of R, and computes the ordinate § of the corresponding root of

the system. For some real root a of R, we represent the ordinate A(a) =
_1stek-a(a) _ Ai(a)

y— . The generic position assumption guarantees that there is
K (c) As(a)
a unique j3;, in P, such that 3; = A(«), where 1 < j < ¢. In order to compute
A1(a)

Jj we use (1): ¢; < Aa) = @) = Bj < qj+1. Thus j can be computed
by binary search in O(lg/¢) = O(lgn) comparisons of A(«) with the g;. This
is equivalent to computing the sign of B;(X) = A(X) — ¢; A2(X) over a by
executing O(Ign) times, SIGN_AT(B;, o).

Theorem 3.5 Let F,G € Z[x,y] such that they are in generic position, their
total degrees are bounded by n, and their bitsize by o. If the polynomials are
not relatively prime, the algorithm reports this and stops. Otherwise, it isolates
all real roots of the system F = G = 0 with complexity Op(n'? +n'%?).

The generic position assumption is without loss of generality since we can
always put the system in such position by applying a shear transformation
(X,Y) — (X +tY,Y), where t is either a random number or computed de-
terministically, c.f [9, 16] and our remark on the previous section based on [7].
The bitsize of the (sheared) system becomes (5(71 + o) and does not change the
bound of th. 3.5. However, now is raised the problem of expressing the real
roots in the original coordinate system. We will report on this in a future work.

3.3 The G_RUR algorithm

We present an algorithm that uses some ideas from RUR but relies on GCD
computations of polynomials with coefficients in an extension field to achieve
efficiency (hence the name G_RUR). For the GCD computations we use the
algorithm (and the implementation) of [18].

The first steps are similar to the previous algorithms: We project on the
axes, we perform real solving and compute the intermediate points on the y-
axis. The complexity is Op(n'? + n'%2).

For each z solution, say «, we compute the square-free part of F(«,y) and
G(a,y), say F' and G. The complexity is that of computing the gcd with the
derivative. B

Assuming fast multiplication algorithms, the cost of this operation is Op (n*o?)
and since we do it O(n?) times, the overall cost is Op(n®s?). Notice the bitsize
of the result is Op(n + o) [2].

Now for each «, we compute the polynomial H = ged(F,G). The cost
of each operation is Op(n® + n*c?) and the overall Op(n® + n0?). Notice
that H is a square-free polynomial in (Z(«))[y], of degree O(n) and bitsize
O(n? 4+ no), the real roots of which correspond to the real solutions of the
system with abscissa a. It should change sign only over the intervals that
contain its real roots. To check these signs, we have to substitute y in H by the
intermediate points, thus obtaining a polynomial in Z(«), of degree O(n) and
bitsize O(n? 4+ no + ns;), where s; is the bitsize of the j intermediate point.
Now, we consider this polynomial in Z[X] and we have to evaluate it over a.
The cost of this operation is Op(n%+nc +n's;). Summing over all the O(n?)
points, we obtain a complexity of Op (n® +n"c). Thus the overall complexity
is Op(nt? 4+ ns).

Again, the reader may refer to [7] for a detailed treatment on the complexity
analysis.

Theorem 3.6 We can isolate the real roots of the system F = G = 0, using
G_RUR in Op(n'? + n'%?).

4 Augmenting Performance

The actual implementation uses some filtering techniques which are described
in this section.

4.1 M_RUR pre-computation filtering

Since M_RUR will search for solutions along the y-axis we refine [1] the intervals
of candidate solutions along the z-axis in order to help the interval arithmetic
filters (refer to the following paragraph) that will be used inside the FIND pro-
cedure.

4.2 Interval Arithmetic

In cases where we want to compute the sign of a polynomial evaluated at a real
algebraic number, we first try to yield result via Interval Arithmetic techniques.
We apply this filter heuristically, based on total degree of the input polynomi-
als several times, with a combination of quadratic refinement of the defining
intervals [1] between executions in each loop.

4.3 GCD

In cases where the above filter fails to yield a result and we either want to
compare two real algebraic numbers or perform univariate SIGN_AT we compute
the ged of the two polynomials that are invloved. By definition the ged of
the two polynomials has a root in (the intersection of) the intervals iff both
polynomials have a same root, in which case the two numbers are equal, or the
required sign is zero.

4.4 Concluding

If both of the above filtering techniques fail, we switch to exact and costly
computations via Sturm sequences. However, in these computations we do not
have to use the rational endpoints with higher bitsize that have arisen through
the above filtering techniques; instead we use endpoints with smaller bitsize.

5 Evaluating Performance

In this section we will present the performance of the implemented algorithms as
well as compare their running time with other algebraic packages. More specif-
ically, we have tested GBRs, and three solvers from SYNAPS (STURM, SUBDIV
and NEWMAC) in the polynomials found in section A of the appendix.

5.1 Comparative Performance.

Table 1 presents running times for the polynomial systems described in ap-
pendix. Polynomial systems R; represent random polynomials of small dimen-
sion. In these cases we can observe that all solvers yield solutions in less than
40 msecs. SYNAPS solvers which are implemented in C++ are faster in the av-
erage case, however SUBDIV and NEWMAC which are based on double precision
arithmetic, are unstable and may provide incorrect solutions. Polynomial sys-
tems M; and D; have polynomials of total degree ranging between 2 and 10 and
try to mimic polynomial systems that may arise in non-linear Computational
Geometry problems, while at the same time we try to increase multiplicities
and singularity points in the intersections or pump the coefficients of the input
polynomials. Finally, polynomial systems C; and W; represent systems that
have to be solved when computing the topology of a real plane algebraic curve.
Polynomial systems R;, M; and D; were drawn from [8], polynomial systems C;
were drawn from [10], and finally W;s were taken from [20].

qEJ deg ’§ P Average Time (msecs)

2 & 2 SLV GbRs Synaps

2 f g < grid mrur | grur sturm | subdiv | newmac
R |34 |w| 2 10 11 6 27 6| 1,372% 12
Ry | 311 1 25 21 40 24 1 2 2
Rs | 311 1 1 2 1 24 1 17 2%
My | 3|3 |wv| 4 119 61 46 26 7 27 2
My | 4] 2 3 6 6 5 25 1 317* 2
Ms| 6|3 |25 2,627 850 441 32 950 | 12,660* 9
My | 9 |10 2 348 323 280 171 f.p.e. 5 384
Dy | 4|5 1 7 11 6 30 4 fail 7
Dy | 2| 2 4 383 114 147 27 28 5 2
Ch | 716 |z|6 2,259 918 257 91 1,198 63* 150%*
Cy | 413 |2|6 365 174 106 30 101 | 2,043* 6*
Cs3 | 8|7 |w|13 309 | 1,723 148 61 154 111%* 173*
Cy | 8|7 |w|17 4,127 | 5,029 492 148 8,575 121%* 343*
Cs |16 | 15 | v | 17 | 353,512 | 48,327 | 6,130 | 6,106 | > 7 hrs | 18, 726* 6, 392%*
Wi 716 |9 2,813 | 1,945 404 96 2,368 106* 38
Wol 4] 3 || 5 843 263 218 30 160 | 1,235* 12%
Ws | 8 | 7 |w|13 1,958 | 1,822 243 72 3,332 153* 272%
Wyl 8| 7 || 17 8,912 | 4,988 747 162 | 26,779 169* 341*
Ws | 16 | 15 | @ | 17 | 411,563 | 50,949 | 6,442 | 5,716 | > 7 hrs | 19,238* 3, 580%*

Table 1: Running Times are averages over 10 runs.

Apart from the three solvers that were presented earlier, we also tested
GBRS [15], which performs exact real solving using Grébner basis and RUR,
through its MAPLE interface, as well as 3 SYNAPS solvers: STURM is a very
naive implementation of the GRID algorithm, based on a previous work of ours;
SUBDIV implements the algorithm in [12], based on the Bernstein basis and
double arithmetic; and NEWMAC, which is a general purpose solver based on
normal-form algorithms and computations of eigenvectors using LAPACK, which
computes all complex solutions. It should be noted however, that accurate
timing in MAPLE is very hard, since it is a general purpose package and a lot of
overhead is added to its function calls. For example this is the case for GBRS.

Our solvers GRID and M_RUR demonstrate a high fluctuation in runtimes,
compared, e.g, to the stability of GBRS. On the one hand, GBRS is based on
a fundamentally different approach to Real Solving making it exhibit these
results. On the other hand, GBRS presents a similar (if not higher in relative
measures) fluctuation on problems requiring more than 30 msecs if someone
inspects running times on a ratio basis with a 30 msecs cut-off. These results
are the outcome of the intrinsic complexity problems that come along with each
polynomial system from our test-bed. In addition to that, similar observations
on the performance can be made for all three SYNAPS solvers.

Regarding the performance of G_RUR, although on average it performs slower

than GBRS by a factor of around 3, it yields solutions in less than a second, apart
from systems C5 and W5 where its performance is similar to that of GBRS. This
discrepancy is expected since GBRS is not based entirely on high-level MAPLE
coding, which is the case of our solvers.

Our three implemented algorithms have demonstrated the most robust be-
haviour, not only by replying within our specified time limits, but also no errors
were generated during their execution. In the case of GBRS, some errors regard-
ing the communication of the application with the MAPLE kernel were gener-
ated, especially on the difficult systems C5 and W5. STURM solver of SYNAPS,
presented a floating point exception on the sheared system M, and failed to
reply within our time limits in two more cases. It should be noted however,
that STURM is a very naive implementation of the GRID algorithm, based on
previous work of ours. Moreover, its inefficiency can be justified by the fact
that it evaluates determinants in order to compute square-free parts. As for
NEWMAC, some error is introduced since it is based on LAPACK for computing
eigenvalues. This is also the case for the SUBDIV solver; we have to mention
that this solver was originally made for computing self-intersections in the unit
cube. In cases where NEWMAC or SUBDIV provided an incorrect solution set we
indicate so in table 1 with an asterisk x.

5.1.1 Shear Transformation

Column sheared in table 1 indicates with a ¥ whether or not a shear transform
was necessary so that the system is in Generic Position. In all cases where
we had to make a shear trasformation, our first attempt in the deterministic
computationwas successful; i.e. we performed the shear (z,y) — (x + 3y,y).
Computing times are shown in table 2. However, our experiments indicate that
deterministic computation for parameter ¢ in the shear trasformation (x,y) —
(x+ty,y) can be very expensive in practice even for polynomial systems of very
low dimension. For example, the computation in system D, which is composed
by polynomials of total degree no more than 5, takes 176 msecs, while all of our
solvers yield a solution in less than 11 msecs. Hence, actual implementations
should rely on a random choice for value t, which will suffice with probability 1.
Note that running times in table 2 are the result of high-performance MAPLE
built-in procedures, thereby inducing state-of-the-art practical performance.

5.2 The effect of filtering

As it can be observed from the description of our filters, we expect the im-
plementations that rely more on univariate SIGN_AT as well as comparisons
between real algebraic numbers to benefit more from the filters. Hence, filter-
ing techniques provide on average a speedup of 10 in the GRID implementation.
Moreover, M_RUR achieves on average a similar speedup factor with the ad-
ditional pre-computation filtering technique. The precomputation filtering in
M_RUR usually contributes by a factor of 2-3. Finally, the average speedup in the
case of G_RUR is around 2, since this algorithm relies more on gecd computations
rather than on sign determination.

total time
system | degree | deg,(A) | (msecs)
fly
Ry 3| 4 18 32
Ry 3] 1 6 4
R3 3] 1 0 4
M, 3] 3 16 8
Mo 4 | 2 4 8
M3 6 3 110 44
M, | 9|10 5402 1,402
Dy 415 180 176
Dy 2 2 12 8
) 71 6 364 1,252
Cy 41 3 28 16
Cs 8| 7 174 572
Cy 8| 7 308 5,576
Cs 16 | 15 7,620 | 2,095,007
Wy 716 332 840
Wy 4 3 42 20
W3 8 | 7 190 296
Wy 8 | 7 328 812
Ws | 16| 15 | 7,724 | 1,018, 864

Table 2: Time to determine deterministic shear t per test.

5.3 More on our implementation

In this section we will attempt a closer investigation on the performance and
bottlenecks of our solvers. A percentage breakdown of the time required for
each system in section A can be found in table 4. Hence, in GRID’s case we
have three columns. The first one Projections shows the percent of time
needed to calculate the resultants w.r.t. variables and y. The second col-
umn Univariate presents the percent of the overall computing time needed for
univariate real solving on the computed resultants. Finally, the third column
Bivariate presents the percent of overall computing time needed to perform
bivariate SIGN_AT and hence decide whether or not a candidate solution is in-
deed a solution of the given polynomial system. In M_RUR’s case we can find 7
columns. Again, the first two columns Projections and Univariate have the
same meaning as in GRID’s case. The third column StHa Sequence presents
the percent of total computing time which was required in order to compute the
Sturm-Habicht sequence of the given polynomials w.r.t. variable y. The column
Interm. Points reflects the computation of the Intermediate Points on y-axis.
Column Filtering on x-axis presents the percent required for our filtering
technique on candidate solutions along the z-axis. Column Compute K presents
the percent required to compute the appropriate index k for each candidate solu-

tion along the z-axis. Finally, column FIND (Biv. Sol.) presents the required
percent for matching solutions via FIND procedure. In G_RUR’s case we can find
5 columns. The first three Projections, Univariate, and Interm. Points
represent the same values as in M_RUR’s case. Column Rational Bivariate
represents the time required to compute solutions of the given polynomial sys-
tem when the abscissa or the ordinate are rational numbers. Finally, column
R4y Bivariate shows the percent required to compute solutions of the given
system when neither the abscissa nor the ordinate is a rational number.

Moreover, table 3 provides a more conceptual view of table 4 describing
crucial statistical properties.

phase of the range . std
. - median | mean
algorithm min | max dev
projections 00.00 | 01.47 00.06 | 00.21 | 00.36
Q% univ. solving | 00.58 | 99.78 12.29 | 23.78 | 30.40
U || biv. solving | 00.18 | 99.27 90.61 | 75.86 | 30.56
sorting 00.00 | 01.52 00.02 | 00.15 | 00.35
projection 00.00 | 01.67 00.07 | 00.19 | 00.37
univ. solving | 01.87 | 91.00 12.48 | 17.18 | 20.48
e || StHa seq. 00.14 | 48.16 01.62 | 08.27 | 14.35
Eﬁ inter. points | 00.00 | 01.05 00.10 | 00.19 | 00.30
= | filter x-cand | 00.56 | 74.50 26.79 | 26.42 | 20.85
compute K 01.16 | 24.53 02.50 | 06.27 | 07.92
biv. solving | 02.58 | 73.74 44.16 | 41.49 | 21.57
projections 00.01 | 04.01 00.05 | 00.63 | 01.16
univ. solving | 06.54 | 99.16 21.05 | 28.88 | 23.39
S inter. points | 00.01 | 03.75 00.19 | 00.56 | 00.99
5 rational biv. | 00.10 | 55.56 02.39 | 11.21 | 18.71
Ryig biv. 00.00 | 93.10 78.80 | 58.46 | 35.41
sorting 00.00 | 03.21 00.09 | 00.26 | 00.70

Table 3: Statistics on the performance of the various phases for the our three
projection-based algorithms; drawn from tab. 4

As far as GRID solver is concerned we can observe that 90% of the time
required to yield a solution on input system is spent during the matching pro-
cedure and BIVARIATE-SIGN_AT procedure. There are cases however, where
tables 4 and 3 imply that univariate solving of the resultants (projections) can
be a bottleneck in the algorithm, but this is rather superfluous since univari-
ate solving takes more than 25% of the computing time in cases where there
are very little candidate solutions and hence the matching procedure will most
likely succeed in every pair. Another indication of this, is the fact that in all
systems but My, the total computing time did not exceed 25 msecs.

10

1T

SLV
GRID MRUR GRUR
z)
» - ®
g | 2| § 3 2| %
2 2| . E| E| 8
0 w0) y 2 o 0 o
SRR R AN R AR R-A N
i o= - i] @ . = ~ iy or . 3] >
g 8 2 3 s = 0 g | £ 2 s 2 g g | =
) o)] o o) ® o) . oF A o)] =) an}
Sl 2] 5 |5 2 50 3 | ¢ S 2] 5 £
7) >) T = Z o < >
> paf s o paf = =] - o — < =] o 3
n A - an] A) n — e o e A) — 2 &4
Ry || 047 | 25.83 | 73.40 || 0.00 | 25.79 | 14.66 | 0.56 | 0.56 | 14.29 | 44.16 || 0.30 | 45.97 | 1.09 | 52.39 0.00
Ry || 0.08 | 38.31 | 61.59 || 0.00 | 14.03 0.57 | 0.19 | 74.50 3.79 6.92 || 0.05 6.54 | 0.11 0.21 | 93.10
Rs || 1.47 | 60.29 | 37.75 || 0.13 | 30.17 | 17.21 | 0.86 2.92 | 22.99 | 25.71 || 0.70 | 40.68 | 2.93 | 55.56 0.05
M || 0.00 | 12.29 | 87.63 || 0.06 | 23.99 1.73 | 0.17 | 31.09 3.40 | 39.56 || 0.03 | 25.15 | 0.40 5.76 | 68.58
My || 0.57 | 44.01 | 53.90 || 0.05 | 25.08 6.85 | 1.05 1.87 | 24.53 | 40.57 || 3.69 | 37.28 | 3.75 | 52.00 0.07
Ms || 0.02 5.17 | 94.79 || 0.05 8.10 | 0.14 | 0.05 | 69.20 1.16 | 21.30 || 0.01 | 13.26 | 0.19 | 0.32 | 86.21
My || 0.03 | 99.78 0.18 || 0.39 | 91.00 0.47 | 0.00 | 0.70 | 4.85 2.58 || 0.27 | 99.16 | 0.03 | 0.54 0.00
Dy | 0.06 | 99.11 0.89 || 0.07 | 37.77 | 10.76 | 0.20 | 23.71 | 22.61 4.88 || 1.22 | 81.30 | 0.54 | 16.95 0.00
Dy || 0.01 | 14.63 | 85.35 || 0.00 | 20.68 0.41 | 0.16 | 47.36 2.50 | 28.90 || 0.02 | 18.00 | 0.20 | 0.10 | 81.64
C1 || 0.06 3.97 | 95.97 || 0.19 5.93 2.50 | 0.00 | 40.69 2.35 | 48.35 || 0.05 | 18.40 | 0.15 2.56 | 78.80
Cs || 0.00 9.35 | 90.61 || 0.11 | 12.48 0.38 | 0.10 | 17.67 | 2.62 | 66.63 || 0.03 | 22.41 | 0.31 2.33 | 74.83
Cs3 | 0.04 | 12.79 | 86.98 | 0.05 2.23 1.25 | 0.00 | 34.44 1.72 1 60.32 || 0.04 | 21.05 | 0.12 | 10.73 | 67.87
Cy || 0.27 | 5.04 | 94.67 | 0.22 2.59 1.01 | 0.01 | 20.98 1.46 | 73.74 || 0.27 | 26.14 | 0.10 2.39 | 70.99
Cs || 0.71 0.66 | 98.63 || 1.67 2.87 | 46.88 | 0.00 | 9.16 1.88 | 37.54 || 4.01 | 13.52 | 0.01 0.27 | 82.18
Wi || 0.06 5.18 | 94.74 || 0.08 4.00 1.18 | 0.02 | 37.28 1.69 | 55.75 || 0.03 | 16.84 | 0.10 1.66 | 81.17
Ws || 0.00 9.55 | 90.44 || 0.01 | 12.15 0.26 | 0.20 | 26.79 1.96 | 58.63 || 0.03 | 17.94 | 0.39 | 0.80 | 80.58
Wi 1| 0.07 | 2.36 | 97.55 || 0.04 2.48 1.04 | 0.00 | 32.67 1.62 | 62.14 || 0.05 | 13.49 | 0.15 6.56 | 79.63
Wy || 0.01 2.82 | 97.15 || 0.02 3.13 1.62 | 0.02 | 21.56 1.50 | 72.14 || 0.01 | 19.41 | 0.11 1.65 | 78.66
Ws || 0.15 0.58 | 99.27 || 0.43 1.87 | 48.16 | 0.00 | 8.84 2.26 | 38.44 || 1.14 | 12.17 | 0.01 0.22 | 86.45

Table 4: Analyzing the percent of time required for various procedures in each algorithm. The table above presents the values in the

sheared case (whenever it was necessary).

In the case of M_RUR we can observe that 70% of the computing time is spent
in univariate solving on the projections as well as on the matching procedure
via FIND. Computing the appropriate index k via COMPUTE_K typically takes
less than 5% of the total computing time with descrepancies to this rule only
on systems that take less than 11 msecs in total. Our pre-computation filtering
technique takes on average 25% of the computing time, but as it has been stated
it typically speeds up overall computing time by a factor of at least 2-3. It should
also be noted that this technique currently aims to help more our filters as the
dimension of the input polynomial increases. Hence, in low dimension we may
observe very high percentages in this filtering step; e.g. system Ro, but in
any case provides improvements in the overall computing time. Finally, as the
total degree or the bitsize of the input polynomials increases, we can observe
that the computation of the StHa sequence can take a substantial share of the
computing time, reminding us that we have not implemented yet the optimal
algorithms for this purpose; check for example systems Cs, W5.

Similar is the case on the G_RUR. The most costly operation is that of
bivariate matching with the gcd computation in the extension field, which typi-
cally takes around 80% of the total time. On the other hand, univariate solving
on the projections occupies about 20% of the time. In cases where we observe
a smaller fragment on the phase of bivariate solving we can observe that in-
put polynomial systems, either have small total degree, or we have to check
for matching among a small number of candidate solutions (possibly with high
multiplicities). In a nutshell, once again we have indications that we need better
implementations in the computation and evaluation of Sturm sequences, since
the projection phase takes no more than 1% of the total time on average.

References

[1] J. Abbott. Quadratic interval refinement for real roots. In ISSAC 2006,
poster presentation. http://www.dima.unige.it/ abbott/.

[2] S. Basu, R. Pollack, and M-F.Roy. Algorithms in Real Algebraic Geome-
try, volume 10 of Algorithms and Computation in Mathematics. Springer-
Verlag, 2003.

[3] E. Brieskorn and H. Knorrer. Plane Algebraic Curves. Birkh#user, Basel,
1986.

[4] J. Canny. The Complezity of Robot Motion Planning. ACM — MIT Press
Doctoral Dissertation Award Series. MIT Press, Cambridge, MA, 1987.

[5] J. Canny. Some algebraic and geometric computations in PSPACE. In
Proc. STOC, pages 460—467, 1988.

[6] A. Dickenstein and I. Emiris, editors. Solving Polynomial Equations: Foun-
dations, Algorithms and Applications, volume 14 of Algorithms and Com-
putation in Mathematics. Springer-Verlag, Berlin, May 2005.

12

[7]

D. L. Diochnos, I. Z. Emiris, and E. P. Tsigaridas. On the complexity of real
solving bivariate systems. In Proc. International Symposium on Symbolic
and Algebraic Computation (ISSAC), 2007.

[. Z. Emiris and E. P. Tsigaridas. Real solving of bivariate polynomial
systems. In V. Ganzha and E. Mayr, editors, Proc. Computer Algebra
in Scientific Computing (CASC), volume 3718 of LNCS, pages 150-161.
Springer, 2005.

L. Gonzélez-Vega and M. El Kahoui. An improved upper complexity bound
for the topology computation of a real algebraic plane curve. J. Complezity,
12(4):527-544, 1996.

L. Gonzalez-Vega and I. Necula. Efficient topology determination of im-
plicitly defined algebraic plane curves. Computer Aided Geometric Design,
19(9):719-743, Dec. 2002.

R. Loos. Computing in algebraic extensions. In B. Buchberger, G. E.
Collins, R. Loos, and R. Albrecht, editors, Computer Algebra: Symbolic
and Algebraic Computation, pages 173-187. Springer-Verlag, 1983.

B. Mourrain and J.-P. Pavone. Subdivision methods for solving polynomial
equations. Technical Report RR-5658, INRIA Sophia-Antipolis, 2005.

B. Mourrain, S. Pion, S. Schmitt, J.-P. Técourt, E. Tsigaridas, and
N. Wolpert. Algebraic issues in computational geometry. In J.-D. Boisson-
nat and M. Teillaud, editors, Effective Computational Geometry for Curves
and Surfaces, pages 117-155. Springer-Verlag, 2006.

J. Renegar. On the worst-case arithmetic complexity of approximating
zeros of systems of polynomials. SIAM J. Computing, 18:350-370, 1989.

F. Rouillier. Solving zero-dimensional systems through the rational uni-
variate representation. J. of AAECC, 9(5):433-461, 1999.

T. Sakkalis and R. Farouki. Singular points of algebraic curves. JSC,
9(4):405-421, 1990.

B. van der Waerden. Modern Algebra. Ungar, 1953. Vol. 1-2.

M. van Hoeij and M. Monagan. A modular GCD algorithm over number
fields presented with multiple extensions. In ISSAC, pages 109-116, July
2002.

N. Wolpert. An Ezact and Efficient Approach for Computing a Cell in an
Arrangement of Quadrics. PhD thesis, MPI fuer Informatik, Oct. 2002.

N. Wolpert and R. Seidel. On the Exact Computation of the Topology of
Real Algebraic Curves. In SoCG, pages 107-115. ACM, 2005.

13

A Test Bed

System Rj:
f= 1—|—2:c—2:c2y—5xy+x2+3x2y
g=2+6x — 6x2y - 11:0y—|—4x2 +5x3y
System Ra:
f=a*+32" +3z — > +2y -2
g=2zx+y—3
System Rj:
f=2*-32"—3zy+6z+y>—3y°+6y—5
g=x+y—2
System M;:
F=v?— 2+
g=y -2+ 2% — 2
System Ma:
Feat— 20y + 4%+t — ¢
g=y—2z"
System Mas:
F= 2% 4 3242 + 302yt + 4° — 422y
_ .2 2 3
g=y —x +u
System Ma:
f=a"—y’ -1
g=z® 441
System Dq:
f=a'—y' -1
g=2"+y" -1
System Ds:
f = —312960 — 26402 — 4800y — 2880y> 4 58080z + 58560y
g = —584640 — 20880z + 1740zy + 1740y + 274920z — 59160y
System C':
f=@E"+2—1—ay+3y—3y°+¢°)
(:1:4 202y — 4z —y? + y4)
g = diff(f, y)
System Cla:
f= y4 — 6y2x + 2% — 43:2y2 + 242°
g = diff(f, y)
System C's:

f=(@-1)*+y*=2)((z+1)* +¢* - 2)
(=1 +@+2°-2)((z+ 1)+ (y+2)*-2)
g = diff(f,y)

14

System Cly:
f=@E—22—-14+9") (@ +22—-144°
(:c2 —22 4341y +4y
(1000002 + 200000z + 299999 + 100000y> -+ 400000y

g = diff(f,y
System C':
f= (2" +42° + 62% + 4z + y" + 49> + 64 + 4y)
(ac4 +42% + 62% + 4z + y' — 4y + 6y — 4y)
(z* — 42® + 62° — 4o + y* + 4y° + 6% + 4y)
(100000z" — 4000002 4 6000002 — 400000z
—1 4 100000y* — 400000y> + 600000y> — 400000y)
g = diff(f, y)
System Wi:
f=@+z—1—yz+3y—3y°+1°)
(@* +2y%5° — 42® — o + y)
g = diff(f, z)
System Wa:
f= y4 — 6y2x + 2% — 4x2y2 + 242°
g = diff(f, z)
System Ws:
f=(z"—22—14y*)(a® +22 —1+y%)
(2 — 2z + 3+ + 4y)(2® + 22 + 3+ y* + 1)
g = diff(f, z)
System Wy:
f=@E—22—-14+9")(@* +22—144°
(2 —2c+ 3+ +4y
(1000002 4 200000z + 299999 + 100000y> + 400000y
g = diff(f, =
System Ws:

f=(z*+42° + 62% + 4z + y* + 4° + 6y° + 4y))
(z* 4 42® + 62° + 42 + y* — 4y° + 6% — 4y)

(z* — 42® + 62° — 4z + y* + 4y° + 6% + 4y)
(100000z* — 400000z> + 6000002> — 400000z

—1 4 100000y" — 400000y> + 600000y> — 400000y)

g = diff(f, =)

15

)
)
)
)

)
)
)
)

