
ACS

Algorithms for Complex Shapes

with Certified Numerics and Topology

Experimental implementation of more operations
on algebraic numbers, possibly with the addition
of numeric filters, and of robust operations on

small polynomial systems

Dimitrios I.
Diochnos

Ioannis Z. Emiris

Bernard Mourrain Elias P. Tsigaridas

ACS Technical Report No.: ACS-TR-241405-02

Part of deliverable: WP-I/D1
Sites: NUA, INRIA
Month: 24

Project co-funded by the European Commission within FP6 (2002–2006)
under contract nr. IST-006413

2

Experimental implementation of more operations on

algebraic numbers, possibly with the addition of

numeric filters, and of robust operations on small

polynomial systems

Dimitrios I. Diochnos∗ Ioannis Z. Emiris† Bernard Mourrain‡

Elias P. Tsigaridas§¶

Abstract

We continue the work in [6] and present our maple implementation
of an algebraic toolbox capable of doing computations with one and two
real algebraic numbers and real solving bivariate polynomial systems. In
addition we describe new functions of the subpackage of the C++ library
synaps for root isolation of univariate and multivariate polynomials. For
this implementation we combine symbolic and numeric tools and illustrate
their behavior on some classical family of polynomials.

1 Introduction

Our motivation comes from real solving polynomial systems of a small number
of unknowns, usually 2 or 3. The problem of well-constrained algebraic system
solving is fundamental. However, most of the algorithms treat the general case
or consider solutions over an algebraically closed field [2, 5, 8, 11, 13, 14, 15, 16].
We focus on real solving in the bivariate case. This is important in several
applications such as the computation of the Voronoi diagram of ellipses, the
computation of the topology of plane and space real algebraic curves, algorithms
involving complex shapes and non-linear computational geometry in general.

Our algorithms isolate all common real roots inside non-overlapping rational
rectangles, and determine the intersection multiplicity per root. We proposed
three projection-based algorithms and analyse their asymptotic bit complexity.
This lead us to a bound of ÕB(N12), when ignoring polylogarithmic factors,
whereas the previous record bound was ÕB(N16) [10], derived from the closely
related problem of computing the topology of real plane algebraic curves, where
N bounds the degree and the bitsize of the input polynomials. Our main tool

∗d.diochnos@di.uoa.gr
†emiris@di.uoa.gr
‡mourrain@sophia.inria.fr
§et@di.uoa.gr
¶Currently at LORIA-INRIA Lorraine. Most part of this work was done while at NUA

and INRIA Sophia-Antipolis.

1

is signed subresultant sequences, extended to several variables by the technique
of binary segmentation. We exploit the recent breakthroughs on univariate
root isolation, which reduced complexity by at least one order of magnitude to
ÕB(N6) [3, 4, 7]. This brought complexity closer to ÕB(N4), which is achieved
by numerical methods, e.g. [18].

We have implemented in maple a package for computations with real al-
gebraic numbers and for implementing our algorithms for bivariate polynomial
system real solving. The implementation is easy to use and integrates seminu-
merical filtering to speed up computation when the roots are well-separated. It
guarantees exactness and completeness of results; moreover, the runtimes seem
very encouraging.

The next section describes our main implementation decisions and Sec. 3
presents in detail the available functionality.

2 Implementation

This section describes the main implementation techniques that we use in our
maple implementation. Our library is open source software1. The design of the
library is based on object oriented programming and the generic programming
paradigm, common to C++, so as to be easy to transfer our implementation in
C++, in the future.

The core object in our library is the class of real algebraic numbers, that
are represented in isolating interval representations, i.e we use a square-free
polynomial and an isolating interval with rational endpoints. In addition we
keep an multiprecision float approximation of real algebraic numbers, the use
of which we describe in the sequel.

Besides, real algebraic numbers, of equal importance are the polynomial
remainder sequences. We provide functionalities for computing signed poly-
nomial remainder sequences with various algorithms, i.e Euclidean, primitive,
monic, subresultant, reduced and Sturm-Habicht and moreover evaluation of a
polynomial or a sequence of polynomials over rational numbers, counting sign
variations in a sequence and various output capabilities. We also provide an
algorithm based on Sturm sequences [7], for isolating the real roots of a uni-
variate integer polynomial and thus constructing real algebraic numbers. We
also plan to implement the algorithm based on continued fractions [20, 21].

We also provide algorithms for computation with one and two real algebraic
numbers, i.e comparisons and sign evaluations; and, of course, our algorithms
for real solving of bivariate polynomial systems. For GCD computations in an
extension field we use the maple package of van Hoeij and Monagan [22]. We
have not implemented, yet, the optimal algorithms for computing and evaluat-
ing polynomial remainder sequences.

As for real solving bivariate polynomial systems, we have implemented the
algorithms grid, m rur and g rur, and experiments with these algorithms
are presented in another report. In the next section we present in details, how
our library can be used.

1currently available at www.di.uoa.gr/~stud1098/SLV

2

Besides the the various techniques of exact computation that we use in our
library, one important feature is the use of filtering techniques, i.e, computa-
tions are performed first using intervals with floating point arithmetic and, if
they fail, then an exact algorithm using rational arithmetic is called. To be
more specific, an algebraic number is represented by a square-free polynomial
an isolating interval and approximate value (using multiprecision floats, already
available in maple). When a computation is needed that involves an algebraic
number, for example a sign evaluation, then we first try to compute the result
of the computation using interval arithmetic and the approximate value that
we have. If we do not manage to certify the answer, then we refine the approx-
imation, and we try again. We repeat this procedure 3 times. If we still fail to
provide a certified answer then we switch to an exact, however, slower method.
Notice, that in all easy cases, i.e when the required result is far away from zero,
we manage to compute the answer using only computations with intervals with
multiprecision floats are endpoints. The speedup is significant, and a more de-
tailed analysis concerning the gain in real solving bivariate polynomial systems
is presented in another report.

3 Using the library

Our library requires a definition for variable LIBPATH which should point on the
appropriate path where the source code is stored in our system. On the follow-
ing, we assume that our library is located under /opt/AlgebraicLibs/SLV/.
The following is an example for univariate solving. First we load the library,
we construct a polynomial and finally we isolate its real roots. The main func-
tionality for solving is under the maple module SLV, and the way that we call
the functions is similar to the use of namespaces in C++. The real solving func-
tion returns an ordered list of real algebraic numbers. When we print the real
algebraic numbers, we output the square-free polynomial, the isolating interval
and a multi-precision float approximation of the number. Moreover, whenever
possible, we provide rational representation of the root.

> LIBPATH := "/opt/AlgebraicLibs/SLV/":

> f := 3*x^3 - x^2 - 6*x + 2:

> sols := SLV:-solveUnivariate(f):

> SLV:-display_1 (sols);

< x^2-2, [-93/64, -45/32], -1.414213568 >

< 3*x-1, [1/3, 1/3], 1/3 >

< x^2-2, [45/32, 93/64], 1.414213568 >

Our class on Polynomial Remainder Sequences2 exports functions allowing
the computation of signed polynomial remainder sequences. Let f, g ∈ Z[x, y],
then you can use any of the following commands in order to compute the desired

2Located in file: PRS.mpl

3

PRS:

L := PRS:-StHa (f, g, y):

L := PRS:-StHaByDet (f, g, y):

L := PRS:-subresPRS (f, g, y):

L := PRS:-SubResByDet (f, g, y):

Notice that the sequences can be computed either using the algorithms
based on pseudo-division or on determinant computations. Computation of
signed polynomial remainder sequences using determinants are the only way of
computing these sequences when the coefficient domain does not support exact
division, i.e when the coefficients are intervals or multiprecision floats.

The function PrintPRS is used for viewing the PRS. For example

> f := 1+2*x+x^2*y-5*x*y+x^2:

> g := 2*x+y-3:

> L := PRS:-subresPRS (f, g, y):

> PRS:-PrintPRS(L);

/ 2 \ 2

\x - 5 x/ y + 1 + 2 x + x

y + 2 x - 3

3 2

2 x - 14 x + 13 x - 1

In order to evaluate the previous sequence at (1, 0) and count the sign
variation we do the following:

> G := PRS:-Eval (L, 1, 0);

G := [4, -1, 0]

> PRS:-var(G);

1

The following is an example for bivariate solving, where the second root lies
in Z2. Note that the output of the real solving function is a list of pairs of real
algebraic numbers, sorted lexicographically.

> LIBPATH := "/opt/AlgebraicLibs/SLV/":

> read cat (LIBPATH, "system.mpl"):

> f := 1+2*x+x^2*y-5*x*y+x^2:

> g := 2*x+y-3:

> bivsols := SLV:-solveGRID (f, g):

> SLV:-display_2 (bivsols);

4

< 2*x^2-12*x+1, [3, 7], 5.915475965 > ,

< x^2+6*x-25, [-2263/256, -35/4], -8.830718995 >

< x-1, [1, 1], 1 > , < x-1, [1, 1], 1 >

< 2*x^2-12*x+1, [3/64, 3/32], .8452400565e-1 > ,

< x^2+6*x-25, [23179/8192, 2899/1024], 2.830943108 >

Again, just like in the case of univariate solving, the third argument that is
printed on the component that describes each algebraic number is an approxi-
mation of the number and not the multiplicity of the root. Similarly, one could
have used one of the other solvers on the above example by referring to their
names, i.e. call the solvers with one of the following commands:

> bivsols := SLV:-solveMRUR (f, g):

> bivsols := SLV:-solveGRUR (f, g):

For those interested in the numerical values or rough approximations of
the solutions one can get the appropriate output via display float 1 and
display float 2 procedures. Hence, for the above examples we have:

> SLV:-display_float_1 (sols);

< -1.4142136 >

< 0.3333333 >

< 1.4142136 >

> SLV:-display_float_2 (bivsols);

[5.9154759, -8.8309519,]

[1.0000000, 1.0000000,]

[0.0845241, 2.8309519,]

Consider the list sols of Ralg numbers that was returned in the univariate
case above; the following are examples on the usage of the signAt function
provided by our Filtered Kernel3, i.e first we try to compute the sign using the
approximations of the real algebraic numbers and interval arithmetic. If we can
not then we switch to an exact method based on Sturm-Habicht sequences.

> FK:-signAt(2*x + 3, sols[1]);

1

> FK:-signAt(x^2*y + 2, sols[3], sols[1]);

-1

3Located in file: FK.mpl

5

4 Filtering techniques for root isolation

The filtering techniques that we described in the previous section and used in
the maple implementation are even more important when they applied to c++

code. In this section we will describe a number of filtering techniques that
are used in synaps for uunivariate and multivariate real solving. We will also
briefly mention the theory behide the filtering techniques.

4.1 Univariate Subdivision Solvers

Our objective is to isolate the real roots of f =
∑d

i=0
aix

i ∈ Q[x]., i.e. to
compute intervals with rational endpoints that contain one and only one root
of f , as well as the multiplicity of every real root.

Here is the general scheme of the subdivision solver that we consider, aug-
mented appropriately so that it also outputs the multiplicities. It uses an ex-
ternal function V (f, I), which bounds the number of roots of f in the interval
I.

Real Root Isolation Input: A polynomial f ∈ Z[x], such that
dg(()f) = d and L (f) = τ .
Output: A list of intervals with rational endpoints, which contain one
and only one real root of f and the multiplicity of every real root.

1. Compute the square-free part of f , i.e. fred

2. Compute an interval I0 = (−B,B) with rational endpoints that contains
all the real roots. Initialize a queue Q with I0.

3. While Q is not empty do

a) Pop an interval I from Q and compute v := V (f, I).

b) If v = 0, discard I.

c) If v = 1, output I.

d) If v ≥ 2, split I into IL and IR and push them to Q.

4. Determine the multiplicities of the real roots, using the square-free
factorization of f .

In the Bernstein subdivision solver approach, we convert the polynomial f

to a representation of degree d in Bernstein basis:

f(x) =
∑

i

biB
d
i (x), and Bd

i (x) =

(
d

i

)
xi(1 − x)d−i (1)

where bi is usually referred as controlling coefficients. Such conversion is done
through a basis conversion [9]. The above formula can be generalized to an

6

arbitrary interval [a, b] by a variable substitution x′ = (b − a)x + a. We denote
by Bi

d(x; a, b)
(
d
i

)
(x − a)i(b − x)d−i(b − a)−d the corresponding Bernstein basis

on [a, b]. There are several useful properties regarding Bernstein basis given
besides the well-known Convex-Hull Properties and the de Casteljau subdivision
algorithm [9]. One is related to Descartes rule of signs and involve the number
of sign variation V (b) of the sequence b = [b1, . . . , bk] that we define recursively
as follows:

V (bk+1) = V (bk) +

{
1, if bibi+1 < 0
0, else

(2)

This yield a simple and yet efficient test for the existence of real roots in a given
interval:

Proposition 4.1 Given a polynomial f(x) =
∑n

i biB
d
i (x; a, b), the number N

of real roots of f on]a, b[is less than or equal to V (b), where b = (bi)i=0,...,d

and N ≡ V (b) mod 2.

With this proposition,

• if V (b) = 0, the number of real roots of f in [a, b] is 0;

• if V (b) = 1, the number of real roots of f in [a, b] is 1.

In order to analyze it, a partial inverse of Descartes’ rule and lower bounds on
the distance between roots of a polynomial have been used. It is proved that
the complexity of isolating the roots of a polynomial of degree d, with integer
coefficients of bit size ≤ τ is bounded by O

(
d4τ2

)
up to some poly-logarithmic

factors. See [4, 7] for more details.
Notice that this localization algorithm extends naturally to B-splines, which

are piecewise polynomial functions [9].
Another interesting property of the Bernstein basis, is the following:

Lemma 4.2 Let f =
∑d

i=0
bi Bi

d(x;u, v), g =
∑d

i=0
ci B

i
d(x;u, v), and bi ≤ ci

for i = 0, . . . , n, then f(x) ≤ g(x) for all x ∈ [u, v].

This result, which is a simple consequence of the positiveness of Bi
d(x;u, v) on

[u, v], has interesting practical consequences. If a polynomial is represented
with large coefficients in the basis (Bi

d(x;u, v))i=0,...,d , one can enclose them
into intervals involving less ”complex” coefficients. The sign variation function
can also be extended to polynomials with interval coefficients, by counting 1
sign variation for a sign sub-sequence +, ?,− or −, ?,+; 2 sign variations for a
sign sub-sequence +, ?,+ or −, ?,−; 1 sign variation for a sign sub-sequence ?, ?,
where ? is the sign of an interval containing 0. Again in this case, if a family
f of polynomials is represented by the sequence of intervals b̄ = [b̄0, . . . , b̄d] in
the Bernstein basis of the interval [u, v],

• if V (b̄) = 1, all the polynomials of the family f have one root in [u, v],

• if V (b̄) = 0, all the polynomials of the family f have no roots in [u, v].

• if V (b̄) = K, for any polynomial f of the family f , we have V (f, I) ≤ K.

7

We denote by ω(I) = |v − u| the width of the interval I = [v, u] and ω(b̄) the
maximum of the widths of the coefficient intervals b̄i, i = 0, . . . , d.

This leads to the following algorithm: The interval representation can be

Real Root Approximation Using Interval Coefficients, with Fixed
Precision Arithmetic. Input: An interval I0 = [u, v], a squarefree
polynomial f ∈ Q[x], a precision ǫ > 0, a threshold κ > 0.
Output: A list of intervals of size < ǫ, which contain one and only one
real root of f .

Initialize a queue Q with I0.

Convert the representation of f in the Bernstein basis on I0 into an
interval representation b̄ with ω(b̄) < κ.

While Q is not empty do

a) Pop an interval I from Q and compute sv := V (b̄, I).

b) If sv = 0, discard I.

c) If sv = 1 and ω(I) < ǫ, output I.

d) If ω(b̄) > κ, convert f into an interval representation b̄ on the
Bernstein basis of I, with ω(b̄) < κ.

e) Else split I into IL and IR and push them to Q.

based on double precision arithmetic (for instance rounding up and down to
the nearest double number) in order to improve the performance of the solver.
The threshold κ has to be adapted to this arithmetic. In this case, all the
subdivision steps are performed with machine precision arithmetic and only
in the conversion step, we use the extended (exact) arithmetic. This improve
considerably the performance of the solver in practice, while still guarantying
the result. This approach has been implemented in the library synaps (see the
class SlvBzBdg in the documentation).

4.2 Multivariate Bernstein Subdivision Solver

We consider now the problem of computing the solutions of a polynomial system




f1(x1, . . . , xn) = 0
...
fs(x1, . . . , xn) = 0

in a box B := [a1, b1] × · · · × [an, bn] ⊂ Rn. The method for approximating
the real roots of this system, that we describe now uses the representation of
multivariate polynomials in Bernstein basis, analysis of sign variations and uni-
variate solvers (Section 4.1). The output is a set of small-enough boxes, which

8

contain these roots. This subdivision solver which can be seen as an improve-
ment of the Interval Projected Polyhedron algorithm in [19], it is described in
more details in [17]. Simple filtering techniques are described to improve the
behavior of the algorithm.

In the following, we use the Bernstein basis representation of a multivariate
polynomial f of the domain I := [a1, b1] × · · · × [an, bn] ⊂ Rn:

f(x1, . . . , xn) =

d1∑

i1=0

· · ·

dn∑

in=0

bi1,...,in Bi1
d1

(x1; a1, b1) · · ·B
in
dn

x(xn; an, bn).

Definition 4.3 For any f ∈ R[x] and j = 1, . . . , n, let

mj(f ;xj) =

dj∑

ij=0

min
{0≤ik≤dk ,k 6=j}

bi1,...,in B
ij
dj

(xj ; aj , bj)

Mj(f ;xj) =

dj∑

ij=0

max
{0≤ik≤dk ,k 6=j}

bi1,...,inx B
ij
dj

(xj ; aj , bj).

Theorem 4.4 (Projection Lemma) For any u = (u1, . . . , un) ∈ I, and any
j = 1, . . . , n, we have

m(f ;uj) ≤ f(u) ≤ M(f ;uj).

As a direct consequence, we obtain the following corollary:

Corollary 4.5 For any root u = (u1, . . . , un) of the equation f(x) = 0 in the
domain I, we have µ

j
≤ uj ≤ µj where

• µ
j

(resp. µj) is either a root of mj(f ;xj) = 0 or Mj(f ;xj) = 0 in [aj , bj]

or aj (resp. bj) if mj(f ;xj) = 0 (resp. Mj(f ;xj) = 0) has no root on
[aj , bj],

• mj(f ;u) ≤ 0 ≤ Mj(f ;u) on [µ
j
, µj].

The solver implementation contains the following main steps. It consists in

1. applying a preconditioning step to the equations;

2. reducing the domain;

3. if the reduction ratio is too small, to split the domain

until the size of the domain is smaller than a given epsilon.
The following important ingredients of the algorithm parametrize the im-

plementation of the algorithm:

9

Preconditioner. It is a transformation of the initial system into a system,
which has a better numerical behavior. Solving the system f = 0 is equivalent
to solving the system M f = 0, where M is an s× s invertible matrix As such a
transformation may increase the degree of some equations, with respect to some
variables, it has a cost, which might not be negligible in some cases. Moreover,
if for each polynomial of the system not all the variables are involved, that is
if the system is sparse with respect to the variables, such a preconditioner may
transform it into a system which is not sparse anymore. In this case, we would
prefer a partial preconditioner on a subsets of the equations sharing a subset
of variables. We consider Global transformations, which minimize the distance
between the equations, considered as vectors in an affine space of polynomials
of a given degree and Local straightening (for s = n), which transform locally
the system f into a system J−1f , where J = (∂xi

fj(u0)1≤i,j≤s is the Jacobian
matrix of f at a point u of the domain I, where it is invertible.

It can be proved that the reduction based on the polynomial bounds m and
M behaves like Newton iteration near a simple root, that is we have a quadratic
convergence, with this transformation.

Reduction strategy, that is the technique used to reduce the initial domain,
for searching the roots of the system. It can be based on Convex hull properties
as in [19] or on Root localisation, which is a direct improvement of the con-
vex hull reduction and consists in computing the first (resp. last) root of the
polynomial mj(fk;uj), (resp. Mj(fk;uj)), in the interval [aj , bj]. The current
implementation of this reduction steps allows us to consider the convex hull
reduction, as one iteration step of this reduction process.

The guarantee that the computed intervals contain the roots of f , is obtained
by controlling the rounding mode of the operations during the de Casteljau
computation.

Subdivision strategy, that is technique used to subdivide the domain, in
order to simplify the forthcoming steps, for searching the roots of the system.
Some simple rules that can be used to subdivide a domain and reduce its size.
The approach, that we are using in our implementation is the parameter domain
bisection: The domain b is then split in half in a direction j for which |bj − aj |
is maximal. But instead of choosing the size of the interval as a criterion for the
direction in which we split, we may choose other criterion depending also on
the value the functions mi,Mj or fj (for instance where Mj −mj is maximal).

A bound for the complexity of this method is detailed in [17]. It involves
metric quantities related to the system f = 0, such as the Lipschitz constant of
f in B, the entropy of its near-zero level sets, a bound d on the degree of the
equations in each variable and the dimension n.

Filtering. Such approach can naturally be combined with enclosure based
on interval representation, so that the subdivision steps are performed only
with machine precision arithmetic. Such combination of symbolic and certi-
fied numeric techniques appear to very efficient in practice, and particularly

10

use full in geometric problems. Moreover, that can naturally be extended to
approximation implicit curves and surfaces [1, 12].

They have been implemented in the library synaps (see for instance the
class SBDSLV specifying the multivariate subdivision solver).

References

[1] L. Alberti, G. Comte, and B. Mourrain. Meshing implicit algebraic sur-
faces: the smooth case. In L. S. M. Maehlen, K. Morken, editor, Mathemat-
ical Methods for Curves and Surfaces: Tromso’04, pages 11–26. Nashboro,
2005.

[2] J. Canny. The Complexity of Robot Motion Planning. ACM – MIT Press
Doctoral Dissertation Award Series. MIT Press, Cambridge, MA, 1987.

[3] Z. Du, V. Sharma, and C. K. Yap. Amortized bound for root isolation
via Sturm sequences. In D. Wang and L. Zhi, editors, Int. Workshop on
Symbolic Numeric Computing, pages 81–93, School of Science, Beihang
University, Beijing, China, 2005.

[4] A. Eigenwillig, V. Sharma, and C. K. Yap. Almost tight recursion tree
bounds for the descartes method. In ISSAC ’06: Proceedings of the 2006
International Symposium on Symbolic and Algebraic Computation, pages
71–78, New York, NY, USA, 2006. ACM Press.

[5] I. Emiris. A general solver based on sparse resultants, Mar. 1995. Available
also as Tech. Report 3110, INRIA Sophia-Antipolis, Jan. 1997.

[6] I. Emiris and P. Tsigaridas. Robust operations on small polynomial sys-
tems. Technical Report ACS-TR-241405-01, NUA, 2006.

[7] I. Z. Emiris, B. Mourrain, and E. P. Tsigaridas. Real Algebraic Numbers:
Complexity Analysis and Experimentation. In P. Hertling, C. Hoffmann,
W. Luther, and N. Revol, editors, Reliable Implementations of Real Num-
ber Algorithms: Theory and Practice, LNCS (to appear). Springer Verlag,
2006. also available in www.inria.fr/rrrt/rr-5897.html.

[8] I. Z. Emiris and J. Verschelde. How to count efficiently all affine roots of
a polynomial system. Discrete Applied Math., Special Issue on Comput.
Geom., 93(1):21–32, 1999.

[9] G. Farin. Curves and surfaces for computer aided geometric design : a
practical guide. Comp. science and sci. computing. Acad. Press, 1990.

[10] L. González-Vega and M. El Kahoui. An improved upper complexity bound
for the topology computation of a real algebraic plane curve. J. Complexity,
12(4):527–544, 1996.

[11] Y. Lakshman and D. Lazard. On the complexity of zero-dimensional alge-
braic systems. In T. Mora and C. Traverso, editors, Effective Methods in

11

Algebraic Geometry, volume 94 of Progress in Mathematics, pages 217–225,
Boston, 1991. Birkhäuser. (Proc. MEGA ’90, Livorno, Italy).

[12] C. Liang, B. Mourrain, and J. Pavone. Subdivision methods for 2d and 3d
implicit curves. In Computational Methods for Algebraic Spline Surfaces.
Springer-Verlag, 2006. To appear.

[13] B. Mourrain. Enumeration problems in geometry, robotics and vision. In
L. Gonzalez-Vega and T. Recio, editors, Effective Methods in Algebraic
Geometry, Progress in Mathematics. Birkhäuser, 1996. (Proc. MEGA ’94,
Santander, Spain).

[14] B. Mourrain. A new criterion for normal form algorithms. In M. Fossorier,
H. Imai, S. Lin, and A. Poli, editors, Proc. AAECC, volume 1719 of LNCS,
pages 430–443, 1999.

[15] B. Mourrain and V. Pan. Solving special polynomial systems by using
structured matrices and algebraic residues. In F. Cucker and M. Shub,
editors, Proc. Workshop on Foundations of Computational Mathematics,
pages 287–304, Berlin, 1997. Springer-Verlag.

[16] B. Mourrain and V. Pan. Asymptotic acceleration of solving polynomial
systems. In Proc. ACM Symp. Theory of Computing, pages 488–496. ACM
Press, New York, 1998.

[17] B. Mourrain and J.-P. Pavone. Subdivision methods for solving polynomial
equations. Technical Report 5658, INRIA Sophia-Antipolis, 2005.

[18] V. Pan. Univariate polynomials: Nearly optimal algorithms for numerical
factorization and rootfinding. J. Symbolic Computation, 33(5):701–733,
2002.

[19] E. C. Sherbrooke and N. M. Patrikalakis. Computation of the solutions of
nonlinear polynomial systems. Comput. Aided Geom. Design, 10(5):379–
405, 1993.

[20] E. P. Tsigaridas and I. Z. Emiris. On the complexity of real root isolation
using Continued Fractions. (submitted to TCS), Jun 2006.

[21] E. P. Tsigaridas and I. Z. Emiris. Univariate polynomial real root isolation:
Continued fractions revisited. In Y. Azar and T. Erlebach, editors, Proc.
14th European Symposium of Algorithms (ESA), volume 4168 of LNCS,
pages 817–828, Zurich, Switzerland, 2006. Springer Verlag.

[22] M. van Hoeij and M. Monagan. A modular GCD algorithm over number
fields presented with multiple extensions. In ISSAC, pages 109–116, July
2002.

12

	Introduction
	Implementation
	Using the library
	Filtering techniques for root isolation
	Univariate Subdivision Solvers
	Multivariate Bernstein Subdivision Solver

