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Abstract. We study the evolution of monotone conjunctions using lo-
cal search; the fitness function that guides the search is correlation with
Boolean loss. Building on the work of Diochnos and Turán [6], we general-
ize Valiant’s algorithm [19] for the evolvability of monotone conjunctions
from the uniform distribution Un to binomial distributions Bn.
With a drilling technique, for a frontier q, we exploit a structure theorem
for best q-approximations. We study the algorithm using hypotheses from
their natural representation (H = C), as well as when hypotheses contain
at most q variables (H = C≤q). Our analysis reveals that Un is a very
special case in the analysis of binomial distributions with parameter p,
where p ∈ F = {2−1/k | k ∈ N

∗}. On instances of dimension n, we

study approximate learning for 0 < p < 2−
1

n−1 when H = C and for
0 < p < n−1

√

2/3 when H = C≤q. Thus, in either case, approximate
learning can be achieved for any 0 < p < 1, for sufficiently large n.
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1 Introduction

Valiant introduced in [19] a framework for analyzing evolution, called evolvability.
The purpose is to allow and explain the evolution of complex mechanisms in
realistic population sizes within realistic time periods. Evolution is treated as a
form of computational learning from examples (experiences) and is a restricted
form of the probably approximately correct (PAC) model of learning [18].

Noise was first studied in the framework of PAC learning by Angluin and
Laird [3] and many subsequent results have been obtained in the statistical
queries model which is due to Kearns [15]; see also [4, 17]. Apart from classi-
fication noise, noise on the attributes has also been considered [12]. Noise is
natural in evolvability as the functionalities that evolve over time realize their
fitness through interaction with the environment (sampling); not by interpreting
tiny differences of the true fitness values given in some compact representation.
In fact, Feldman showed in [8] that evolvability is equivalent to learning with
correlational statistical queries [5]. However, as also pointed out by Feldman,
this translation is not necessarily the most efficient or intuitive method in gen-
eral. Hence, it is common to discuss distribution-specific results on the analysis



of intuitive algorithms in the framework of evolvability; e.g. [16, 14, 2]. Thus,
the study of simple and intuitive evolvability algorithms using Valiant’s original
Boolean loss is of interest for specific distributions. Our aim is to understand
better such algorithms in the framework of evolvability as well as in the broader
framework of optimization and evolutionary algorithms (EAs) [22, 7].

Previous work in evolvability includes [19, 21, 9, 11, 8, 10, 20, 13, 16, 14, 2]. In
[19] Valiant introduced a swapping-type algorithm and proved the evolvability
of monotone conjunctions under the uniform distribution (Un). The analysis was
simplified by Diochnos and Turán in [6] and in fact it was shown that monotone
conjunctions are evolvable in O (log(1/ε)) generations. The result was strength-
ened to general conjunctions under Un by Kanade, Valiant and Vaughan in [14]
including target drift. Further, Feldman in [8] showed that conjunctions are

evolvable for any fixed distribution in Õ (n) generations, where Õ (·) ignores
poly-log factors. Kanade in [13] extended Valiant’s model to include genetic re-

combination where it follows that conjunctions are evolvable in O
(
(log(n)/ε)

2
)

generations. On the other hand, one open question from [13] was whether the
analysis of Diochnos and Turán could be generalized to distributions beyond Un.

In this paper we address this last question by considering binomial distri-
butions Bn with parameter p. We do so by exploiting a structure theorem for
best approximations with a drilling technique. Drilling improves our estimates
of the fitness function by increasing the sample size. In turn, we can discover
any important variable for targets up to a certain size beyond the frontier q of
our search. Hence, even if we have the power to form some targets precisely, the
evolutionary mechanism only forms a best approximation for them. This way,
targets with many variables are dealt in an easy way. Our analysis reveals the
family F = {2−1/k | k ∈ N

∗}, where Un is the first member and is obtained
for k = 1; i.e. p = 1

2 . As we consider larger values of p in the (0, 1) interval,
every time we encounter one more member of F , we drill deeper, thus allowing
evolution to identify variables from targets containing one more variable. Evolv-

ability follows for any fixed distribution in O
(
log 1

p
(1/ε)

)
generations; the setup

of [6] for Un is recovered as a special case. Our analysis reveals an interesting
non-trivial connection between the parameters, which is captured in Figure 3.

The paper is structured as follows. Section 2 gives the definition of evolv-
ability and Section 3 preliminaries specific to our setup. Section 4 lays the foun-
dations for the evolvability of monotone conjunctions. Section 5 discusses adap-
tation. Section 6 discusses the convergence. Section 7 analyzes the complexity.
We conclude with further remarks in Section 8. Due to space limitations some
proofs are sketched or omitted in this version.

2 Definition of Evolvability

The truth values true and false are represented by 1 and −1 respectively. The
fitness function that guides the search is called performance. For a target c and



a fixed distribution Dn over {0, 1}n, the performance of a hypothesis h is

PerfDn
(h, c) =

∑

x∈{0,1}n

h(x) · c(x) ·Prx∼Dn
(x) , (1)

called the correlation of h and c. Evolution starts with an initial hypothesis
h0, and produces a sequence of hypotheses using a local-search procedure in
H. Similarity between h and c in an underlying distribution Dn is measured
by the empirical performance function PerfDn

(h, c, |S|) which is evaluated ap-
proximately by drawing a random sample S and computing PerfDn

(h, c, |S|) =
1
|S|

∑
x∈S h(x) · c(x). Valiant’s original definition of evolvability treated the con-

fidence parameter δ and the error parameter ε as one. Below, even if we draw
the definitions from [19], we modify them slightly to also include δ explicitly.

Definition 1 (Modified from [19]). For a polynomial p(·, ·) and a represen-
tation class R a p-neighborhood N on R is a pair M1,M2 of randomized poly-
nomial time Turing machines such that the numbers n (in unary), ⌈1/ε⌉ and
a representation r ∈ Rn act as follows: M1 outputs all the members of a set
NeighN (r, ε) ⊆ Rn, that contains r and may depend on random coin tosses of
M1, and has size at most p(n, 1/ε). If M2 is then run on this output of M1, it
in turn outputs one member of NeighN (r, ε), with member r1 being output with
a probability PrN (r, r1) ≥ 1/p(n, 1/ε).

Definition 2 (Modified from [19]). For confidence parameter δ, error pa-
rameter ε, positive integers n and s, an ideal function f ∈ Cn, a representation
class R with p(n, 1/ε)-neighborhood N on R, a distribution D, a representa-
tion r ∈ Rn and a real number t, the mutator Mu(f, p(n, 1/ε), R,N,D, s, r, t) is
a random variable that on input r ∈ Rn takes a value r1 ∈ Rn determined
as follows: For each r1 ∈ NeighN (r, ε) it first computes an empirical value
of ν(r1) = PerfDn

(r1, f, s). Let Bene be the set {r1 | ν(r1) > ν(r) + t} and
Neut be the set difference {r1 | ν(r1) ≥ ν(r) − t} \ Bene. If Bene 6= ∅ then
output r1 ∈ Bene with probability PrN (r, r1) /

∑
r1∈BenePrN (r, r1). Other-

wise (Bene = ∅), output an r1 ∈ Neut, the probability of a specific r1 being
PrN (r, r1) /

∑
r1∈NeutPrN (r, r1).

Definition 3 (Modified from [19]). For a mutator Mu(f, p(n, 1/ε), R,N,D,-
s, r, t) a t-evolution step on input r1 ∈ Rn is the random variable r2 = Mu(f,-
p(n, 1/ε), R,N,D, s, r1, t). We then say r1 → r2 or r2 ← Evolve(f, p(n, 1/ε), R,-
N,Dn, s, r1, t).

We say that polynomials tℓ(x, y) and tu(x, y) are polynomially related if for
some η > 1 for all x, y(0 < x, y < 1)(tu(x, y))

η ≤ tℓ(x, y) ≤ tu(x, y).

Definition 4 (Modified from [19]). For a mutator Mu(f, p(n, 1/ε), R,N,D,-
s, r, t) a (tℓ, tu)-evolution sequence for r1 ∈ Rn is a random variable that takes
as values sequences r1, r2, r3, . . . such that for all i ri ← Evolve(f, p(n, 1/ε), R,-
N,D, s, ri−1, ti), where tℓ(1/n, ε) ≤ ti ≤ tu(1/n, ε), tℓ and tu are polynomially
related polynomials, and ti is the output of a TM T on input ri−1, n, ε and δ.



Definition 5 (Goal of Evolution; modified from [19]). For polynomials
p(n, 1/ε), s(n, 1/ε, 1/δ), tℓ(1/n, ε) and tu(1/n, ε), a representation class R and
p(n, 1/ε)-neighborhood N on R, the class C is (tℓ, tu)-evolvable by (p(n, 1/ε), R,-
N, s(n, 1/ε, 1/δ)) over distribution D if there is a polynomial g(n, 1/ε, 1/δ) and a
Turing machine T , which computes a tolerance bounded between tℓ and tu, such
that for every positive integer n, every f ∈ Cn, every δ > 0, every ε > 0, and
every r0 ∈ Rn it is the case that with probability at least 1−δ, a (tℓ, tu)-evolution
sequence r0, r1, r2, . . ., where ri ← Evolve(f, p(n, 1/ε), R,N,Dn, s(n, 1/ε, 1/δ),-
ri−1, T (ri−1, n, ε)), will have PerfDn

(
rg(n,1/ε,1/δ), f

)
≥ 1− ε.

The number of generations needed for evolution is upper bounded by g
(
n, 1

ε ,
1
δ

)
.

Definition 6 (Modified from [19]). A class C is evolvable by (p(n, 1/ε), R,-
N, s(n, 1/ε, 1/δ)) over D iff for some pair of polynomially related polynomials
tℓ, tu, C is (tℓ, tu)-evolvable by (p(n, 1/ε), R,N, s(n, 1/ε, 1/δ)) over D.

Definition 7 (Modified from [19]). A class C is evolvable by R over D iff for
some polynomials (p(n, 1/ε) and s(n, 1/ε, 1/δ)), and some p

(
n, 1

ε

)
-neighborhood

N on R, C is evolvable by (p(n, 1/ε), R,N, s(n, 1/ε, 1/δ)) over D.

3 Preliminaries

Given a set of Boolean variables x1, . . . , xn, we assume that there is an unknown
target c ∈ C, a monotone conjunction of some of these variables. Let C be the
concept class of all possible conjunctions in their natural representation. For a
threshold q, let C≤q be the set of monotone conjunctions from C that contain at
most q variables. Further, let C>q = C \ C≤q be the set of conjunctions from C
that are not included in C≤q.

By Definition 2, the neighborhood is split in 3 parts by the increase in per-
formance that the hypotheses in the neighborhood offer. There are beneficial,
neutral, and deleterious mutations. Thus, we need an oracle for computing

∆ = PerfDn

(
h′, c

)
− PerfDn

(h, c) , (2)

and hence, for a given t, determine the set where h′ ∈ N lies. Now let

h =

m∧

i=1

xi ∧
r∧

ℓ=1

yℓ and c =

m∧

i=1

xi ∧
u∧

k=1

wk. (3)

The x’s are mutual variables, the y’s are called redundant and the w’s are called
undiscovered or missing. Variables in the target c are called good, otherwise
bad. With |h| we denote the size (or length) of a conjunction; the number of
variables that it contains. A binomial distribution over {0, 1}n is specified by the
probability p of setting each variable xi to 1. A truth assignment (a1, . . . , an) ∈
{0, 1}n has probability

∏n
i=1 p

ai · (1 − p)1−ai . We write Bn to denote a fixed
binomial distribution, omitting p for simplicity. On an instance of dimension



good bad

(a) U < 1/2

badgood

(b) U = 1/2

badgood

(c) U > 1/2

Fig. 1. Arrows pointing towards the nodes indicate addition of one variable and arrows
pointing away from a node indicate removal of one variable. This is consistent with
arrows indicating swapping a pair of variables. Thick solid lines indicate ∆ > 0. Simple
lines indicate ∆ = 0. Dashed lines indicate ∆ < 0. Let U be the weight of the undis-
covered variables. Figure 1(a) holds when U < 1/2, Figure 1(b) holds when U = 1/2
and Figure 1(c) holds when U > 1/2.

n we say that Bn has low density when 0 < p < 1
2 , medium density when

1
2 ≤ p ≤ 2−

1
n , high density when 2−

1
n < p < n

√
2/3, and very high density when

n
√

2/3 ≤ p < 1. Consider a target c and a hypothesis h as in (3). Then (1) gives

PerfBn
(h, c) = 1− 2pm+r − 2pm+u + 4pm+r+u . (4)

Figure 1 presents the sign of ∆ that guides the search. Note that while the
sign of an arrow may be fully determined, it is the value of the tolerance t
that defines the two sets of interest (Bene and Neut) that guide the search.
Figure 1(a) refers to the expansion phase, Figure 1(b) to the identification phase
and Figure 1(c) to the shrinking phase.

3.1 The Swapping Algorithm

The swapping algorithm for monotone conjunctions was introduced by Valiant
in [19] and was also analyzed in [6]. The neighborhood N of a conjunction h
is the set of conjunctions that arise by adding a variable (neighborhood N+),
removing a variable (neighborhood N−), or swapping a variable with another
one (neighborhood N+−), plus the conjunction itself1. Thus, N = N− ∪ N+ ∪
N+− ∪ {h}. As an example, let h = x1 ∧ x2, and n = 3. Then, N− = {x1, x2},
N+ = {x1∧x2∧x3}, and N+− = {x3∧x2, x1∧x3}. Note that |N | = O (n |h|) in
general. Algorithm 1 presents the mutator function for the swapping algorithm.

Compute-q uses Table 2 or (11) to set q depending on the hypothesis class
H that is used for evolution. (Table 2 used for Compute-q, already incorporates
a modified ε when needed.) Line 6 computes the minimum non-zero value A of
A(u) = |1− 2pu| for u ∈ {0, . . . , n} using Table 1 from Section 4.1. Tolerance t is
normally tℓ; however, when H = C and |h| > q then t = tu. We discuss tolerance
in Sections 4.2 and 7. Performance computes the empirical performance of h
w.r.t. c over the distribution Bn with parameter p, within ǫs of its true value,

1 As h will be clear from the context, we write N instead of N(h).



Algorithm 1: Mutator function for a binomial distribution

Input: dimension n, p ∈ (0, 1), δ ∈ (0, 1), ε ∈ (0, 2), H ∈ {C≤q, C}, h ∈ H
Output: a new hypothesis h′

1 q ← Compute-q(p, ε, H); ϑ ←
⌊

log 1
p
(2)

⌋

;

2 if |h| > 0 then Generate N− else N− ← ∅;
3 if |h| < q then Generate N+ else N+ ← ∅;
4 if |h| ≤ q then Generate N+− else N+− ← ∅;
5 Bene← ∅; Neutral← {h};

6 A ← min 6=0{|1− 2pu|}; µ = min
{

2pq+ϑ , A
}

;
7 tℓ ← pq−1µ(1− p); tu ← 4pq(1− p);
8 if (H = C) and (|h| > q) then t ← tu; ǫs ← tu/4; δs ← δ/4 ;
9 else t← tℓ; ǫs ← tℓ; δs ← δ/2 ;

10 SetWeight(h, h, N−, N+, N+−); νh ← Perf(p, h, ǫs, δs);
11 for x ∈ N+, N−, N+− do

12 SetWeight(x, h, N−, N+, N+−); νx ← Perf(p, x, ǫs, δs);
13 if νx > νh + t then Bene ← Bene ∪ {x} ;
14 else if νx ≥ νh − t then Neutral ← Neutral ∪ {x} ;

15 if Bene 6= ∅ then return Select(Bene) else return Select(Neutral);

with probability at least 1−δs; see Section 7. SetWeight assigns the same weight
to all members of {h}∪N−∪N+ so that they add up to 1

2 , and the same weight
to all the members of N+− so that they add up to 1

2 . Select computes the sum
of weights W of the conjunctions in the set passed as argument, and returns a
hypothesis h′ with probability wh′/W , where wh′ is the weight of h′.

4 Foundations for Evolvability

Let log 1
p
(x) be the logarithm of x in base 1

p . Given a size q and an extension ϑ,

a hypothesis h is called short when |h| ≤ q, medium when q < |h| ≤ q + ϑ and
long when |h| > q + ϑ. Given a target c and a size q, we will be interested in
the best size q approximation of c. The reason is Theorem 1 below, first proved
in [6] for Un. Note that the best approximation is not necessarily unique.

Definition 8 (Best q-Approximation). Let h be a hypothesis such that |h| ≤
q and ∀h′ 6= h,

∣∣h′
∣∣ ≤ q : PerfDn

(
h′, c

)
≤ PerfDn

(h, c) . We call h a best q-
approximation of c.

Theorem 1 (Best Approximations under Binomial Distributions; [6]).
The best q-approximation of a target c is c if |c| ≤ q, or any hypothesis formed
by q good variables if |c| > q.

Lemma 1 (Performance Lower Bound, Medium Target). Let Bn be a
binomial distribution. Let c be a medium target. A best q-approximation h has
PerfBn

(h, c) > 1− 2pq.



Lemma 2 (Performance Lower Bound, Long Target). Let Bn be a bi-
nomial distribution. Let h be a hypothesis such that |h| ≥ q and consider a long
target c. Then, PerfBn

(h, c) > 1− 2pq
(
1 + p1+ϑ

)
.

We now examine the difference ∆ between the current hypothesis h and a
hypothesis h′ that is generated in each neighborhood.

Comparing h′ ∈ N+ with h. We introduce a variable z in the hypothesis h. If z
is good, ∆ = 2p|h|(1− p) > 0. If z is bad, ∆ = 2p|h|(1− 2pu)(1− p).

Comparing h′ ∈ N− with h. We remove a variable z from the hypothesis h. If z
is good, ∆ = −2p|h|−1(1− p) < 0. If z is bad, ∆ = −2p|h|−1(1− 2pu)(1− p).

Comparing h′ ∈ N+− with h. Replacing a good with a bad variable gives ∆ =
−4p|h|+u(1 − p). Replacing a good with a good, or a bad with a bad variable
gives ∆ = 0. Replacing a bad with a good variable gives ∆ = 4p|h|+u−1(1− p).

Our aim for short and medium targets is to have the ability to determine the
signs of the differences∆ in every case. For long targets, we want to determine the
signs of the ∆’s for the mutations that arise in the N+ and N− neighborhoods;
not necessarily for those in the N+− neighborhood. We denote

A (u) = |1− 2pu| , u ∈ {0, . . . , n} . (5)

As A (u) appears in the ∆’s for the mutations in the N+ and N− neighborhoods,
we need to study the minimum non-zero value that A (u) can attain for u ∈
{0, 1, . . . , n} under an arbitrary Bn. The zeros of A (u) are found in the family

F =
{
2−

1
k

∣∣ k ∈ N
∗
}
. (6)

4.1 On the Minimum Non-Zero Value of A (u), u ∈ {0, . . . , n}

Lemma 3. Consider the polynomials fk(p) = pk+1 + pk − 1 defined respectively
in the intervals Jk =

[
2−1/k, 2−1/(k+1)

]
with k ∈ N

∗. Then, each fk is monotone
increasing in Jk and has a (unique) root ξk in the open interval Jk.

Table 1 and Figure 2 present min 6=0 {A (u)} as p ranges in (0, 1).

4.2 On Tolerance and Design Requirements

The critical part of the evolution will be evolving short hypotheses. In this part
we want to identify swaps precisely for short and medium targets and thus
|∆| ≥ 4p2q+ϑ−1(1− p). Regarding additions and removals we want to be able to
identify the sign of ∆ precisely, regardless of the target; thus, using (5), for the
non-zero values of ∆, |∆| = 2p|h|−1 ·A (u)·(1−p) ≥ 2pq−1 ·min 6=0 {A (u)}·(1−p).
Therefore, in order to determine the tolerance, we want to determine

2pq+ϑ < min
6=0
{A (u)} = min

6=0
{|1− 2pu|} = A . (7)



Table 1. min 6=0 {A (u)}, attained for specific u by some target c, as p ranges in (0, 1).
When 2−1/k < p < 2−1/(k+1), then ξk is the root from Lemma 3.

density p min 6=0 {A (u)} for u obtained by target c

low 0 < p < 1/2 1− 2p 1 1 ≤ |c| ≤ min {n, q + 1}

medium

2−1/k, with 1 ≤ k ≤ n− 1 1− p k + 1 k + 1 ≤ |c| ≤ min {n, q + k + 1}

2−1/n (1− p)/p n− 1 n− 1 ≤ |c| ≤ n

2−1/k < p ≤ ξk with
2pk − 1 k k ≤ |c| ≤ min {n, q + k}

1 ≤ k =
⌊

log 1
p
(2)

⌋

≤ n− 1

ξk ≤ p < 2−1/(k+1) with
1− 2pk+1 k + 1 k + 1 ≤ |c| ≤ min {n, q + k + 1}

1 ≤ k =
⌊

log 1
p
(2)

⌋

≤ n− 1

(very) high 2−1/n < p < 1 2pn − 1 n |c| = n
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Fig. 2. min 6=0 {A (u)} for n = 8, as presented in Table 1.

We now let

µ = min

{
2pq+ϑ , min

6=0
{A (u)}

}
and tℓ = pq−1µ(1− p) . (8)

Tolerance is set by (8) when evolution takes place in C≤q. When H = C≤q,
tℓ = tu and this is a special case, fixed-tolerance evolvability. On the other hand,
if H = C = C≤q ∪ C>q, the approach in C>q relies on setting the tolerance tu
large enough so that a random walk can be performed and eventually form a
hypothesis in C≤q. The neighborhood in C>q is N−∪{h}; see Algorithm 1. Thus,
|∆| ≤ 2p|h|−1(1− p) ≤ 2pq(1− p) and tu is set to be tu = 2 ·max{|∆|}, that is,

tu = 4pq(1− p) . (9)

Thus, requiring (tu)
η ≤ tℓ ≤ tu < 1 for some η > 1, we get the constraints

p ≤ 1
4

1
4 < p < 1

2 p = 1
2

1
2 < p

q ≥ 1 q ≥ 2 q > 1 q ≥ log 1
p
(2)

(10)



5 Adaptation

Corollary 1. q ≥ log 1
p

(
3
ε

)
, ϑ ≥ 0, |h| = q < |c| ≤ q+ϑ⇒ PerfBn

(h, c) > 1− 2ε
3 .

Corollary 2. q ≥ log 1
p

(
3
ε

)
, ϑ ≥ log 1

p
(2p), |h| ≥ q, |c| > q+ϑ⇒ PerfBn

(h, c) >

1− ε.

5.1 Evolution when H = C

In light of Corollaries 1 and 2, setting q =
⌈
log 1

p

(
8
ε

)⌉
and ϑ =

⌊
log 1

p
(2)

⌋
would

also satisfy the requirements in (10) for every 0 < ε < 2. However, we can
improve the frontier q. Depending on p, let q and ϑ be defined from Table 2.

Table 2. Definition of q and ϑ depending on p when evolving on H = C = C≤q ∪ C>q.

p q ϑ

p ≤ 1
4

⌈

log 1
p
(3/ε)

⌉

0

1
4
< p < 1

2
max

{⌈

log 1
p
(3/ε)

⌉

, 2
}

0

p = 1
2

max
{⌈

log 1
p
(3/ε)

⌉

, 2
}

1

p > 1
2

max
{⌈

log 1
p
(3/ε)

⌉

,
⌈

log 1
p
(2)

⌉} ⌊

log 1
p
(2)

⌋

Learnability on a Fixed Dimension. Let λ > 0. Then, log 1
p

(
3
ε

)
≤ λ ⇒ ε ≥ 3pλ.

Approximate learning degenerates to exact, when log 1
p

(
3
ε

)
> n − 1, as due to

rounding q ≥ n. However, we also need to be able to achieve q = n for a value of
ε in the (0, 2) interval. Thus, on any fixed dimension n, it makes sense to discuss
about approximate learning (λ ≤ n− 1) when 0 < p < n−1

√
2/3 and about exact

(λ = n) when p < n
√

2/3. That is, when p ≥ n
√
2/3 then the dimension is too

low to allow even exact learning with our method. Regarding ⌈log 1
p
(2)⌉ from

Table 2, approximate learning can be done when 0 < p < 2−
1

n−1 and exact when
0 < p < 2−

1
n . Hence, on an instance of dimension n, we study approximate

learning when 0 < p < 2−
1

n−1 and exact learning when 0 < p < 2−
1
n .

Adaptation for Large Input Error. For 1
4 < p < 1

2 , when ε ≥ 3p, evolution will
reset ε to ε′ = 3p2 ≥ 3

16 . In the end it will return a hypothesis that has accuracy
1− ε′ > 1− ε but through a (tℓ, tu)-evolutionary sequence.

Let Ik = [2−
1
k , 2−

1
k+1 ). When p ∈ I1, if ε ≥ 3p, it will be reset to ε′ = 3p2 >

3
4 . When p ∈ Ik with ⌊log 1

p
(2)⌋ = k ∈ {2, . . . , n − 1}, if ε ≥ 3pk, then setting

ε′ = 3pk+1 ≥ 3 · 2−
k+1

k > 1 implies q = ⌈log 1
p
(3/ε′)⌉ = ⌈log 1

p
(2)⌉ = k + 1 ≤ n.



Thus, we will treat q as if it is defined solely by q = ⌈log 1
p

(
3
ε

)
⌉ in Table 2. If the

input ε is too large, evolution will adapt it to an appropriate constant.

5.2 Evolution when H = C≤q

Working strictly on H = C≤q, one need no longer respect the requirements in
(10) as we have fixed-tolerance evolvability; see Section 4.2. Hence, we let

q =
⌈
log 1

p
(3/ε)

⌉
and ϑ =

⌊
log 1

p
(2)

⌋
. (11)

By restricting the hypothesis class, on an instance of dimension n, evolution
can now take place even when p belongs to the high density region, contrasting
Section 5.1. Also, no adaptation is needed for any feasible (p, ε) pair.

5.3 Determining µ = min
{
2pq+ϑ

,min 6=0{A (u)}
}
.

For a specific p, we need to identify the minimum qm such that 2pqm+ϑ < A.
Then, for ε < 3pqm−1 swaps are more expensive. Thus, qm satisfies2

qm > log 1
p
(2pϑ/A) = ζ . (12)

A Smooth Frontier for µ = min
{
2pq+ϑ,min 6=0{A (u)}

}
. As q involves round-

ing, 2pq+ϑ = 2p⌈log1/p(3/ε)⌉+⌊log1/p(2)⌋ ≥ 2p1+log1/p(3/ε)+log1/p(2) = pε
3 . Thus, by

overestimating the required accuracy for swaps, determining µ can be reduced
to the simpler pε

3 < A ⇔ ε < 3A
p . In other words, µ could also be defined as

µ = min
{

pε
3 ,min 6=0{A (u)}

}
in (8) and in line 6 of Algorithm 1.

Figure 3 presents all the above relationships between p and ε.

6 Convergence

6.1 Short Initial Hypothesis and Short Target

If U < 1
2 , Figure 1(a) applies. Beneficial mutations can only add or swap vari-

ables. Swaps or additions of good variables increase m. Thus after at most |c|
such mutations and at most q − |h0| additions of bad variables, U ≥ 1

2 .
If U = 1

2 , Figure 1(b) applies. U = 1
2 ⇒ p ∈ F for some k. Further, U = 1

2 ⇒
pu = 1

2 ⇒ u = log 1
p
(2) = k. Also, (k = u)∧(u ≤ |c|)∧(|c| ≤ q)⇒ k ∈ {1, . . . , q}3.

2 As p ranges in (0, 1), a natural question in (12) is whether ζ ∈ Z; then qm = ζ+ 1,
otherwise qm = ⌈ζ⌉ < ζ + 1. Equivalently, does 2pζ+ϑ − A = 0 hold for ζ ∈ Z? By
Table 1 and the definition of ϑ, for Un, ζ = 1. Hence, in Un, when

3
2
≤ ε < 3 then the

two quantities for µ in (8) have the same value for a range of ε values. Regardless if
there are additional integer solutions, qm can be computed efficiently.

3 A clarification comment is in order here. When H = C, by Table 2, q ≥ ⌈log 1
p
(2)⌉ ≥

log 1
p
(2) = k always, and thus, on an instance of dimension n, as p increases in F for

successive values of k, then q increases at least that fast.



Fig. 3. H = C and n = 8. Along the line 3p, q = 1 for the lowest possible error at every
p. Similarly, the curves 3pn−1 and 3pn are also drawn. In the top part of the plot, the
triangle and the region with the jigsaw frontier that are shaded indicate (p, ε) pairs
where evolution needs to adapt a large input ε to a suitable smaller constant ε′; see
Section 5.1. The shaded region in the lower part of the plot, as well as the individual
spikes for the members of F , indicate (p, ε) pairs where swaps determine µ in (8).
(When p < 1

2
, the critical p’s are obtained by solving numerically 2pζ + 2p − 1 = 0

for ζ ∈ N
∗. For p ≥ 1

2
, we use stepsize ∆p = 10−5 and for every such p we compute

the turning point ε; see Section 5.3.) Finally, the smooth boundary that is discussed
in Section 5.3 is also shown; the separation point for Un is

(

1
2
, 3
)

and it is not drawn.

In one step, the first beneficial swap or addition of good variable brings one more
good variable in the hypothesis and U > 1

2 .
When U > 1

2 , corresponding to Figure 1(c), then beneficial mutations are
those that add potentially missing good variables, swap bad variables for good
ones, or finally delete bad variables. Each swap or addition increases the number
of good variables in the hypothesis and thus there can be |c| of those. Further,
there can be at most q removals of bad variables. After we get to the target,
there are no beneficial mutations; the only neutral mutation is the target itself.

In the above process, until we reach the target, the number m of good vari-
ables that appear in h is non-decreasing. Thus there can be at most |c| additions
of good variables and swaps combined. Further, there can be at most q+ q = 2q
beneficial additions or deletions of bad variables. Hence, overall, after at most
|c|+ 2q ≤ 3q steps the target will be identified and that formation is stable4.

The above is not necessarily true when H = C≤q. By (11), when p ∈ F with
k ≥ 3 (i.e. p ∈ F and p ≥ 2−1/3), for input ε such that 2 > ε ≥ 3pk−1 = 3

2p
, then

q = ⌈log 1
p
( 3
ε
)⌉ < ⌊log 1

p
(2)⌋ = log 1

p
(2) = k. However, these distributions and input

errors are irrelevant to our discussion as for |c| ≤ q, U = pu ≥ pq ≥ pk−1 = 1
2p

> 1
2
.

4 Diochnos and Turán in [6] gave a bound of 2q for Un. Un is once again special,
because p = 1

2
is the unique member of F where in the shrinking phase (Figure 1(c)),

U > 1
2
⇒ U = 1 ⇒ u = 0; that is, one needs to argue only about specializations



6.2 Short Initial Hypothesis and Medium Target

Medium targets make sense when p ≥ 1
2 and only when we perform approximate

learning. Hence, the input error satisfies ε ≥ 3pn−1 always. Also, for a medium
target, q < |c| = q+j ≤ q+ϑ, a hypothesis h is a best q-approximation if m = q.
Then, u = j ≤ ϑ⇒ U = pu = pj ≥ pϑ = 1

2 .
Thus, starting with a hypothesis h such that U < 1

2 , we have that m ≤ q−1.
Hence, either |h| ≤ q − 1 ⇒ N+ 6= ∅, or |h| = q ⇒ r ≥ 1. In either case, there
is at least one beneficial mutation in the neighborhood. As long as U < 1

2 , there
can be at most q beneficial additions of variables and at most q beneficial swaps.
Therefore, 2q generations are enough to form a hypothesis with U ≥ 1

2 .
If U = 1

2 , Figure 1(b) applies. U = 1
2 ⇒ p ∈ F for some k. Further, U = 1

2 ⇒
pu = 1

2 ⇒ u = log 1
p
(2) = k = ϑ. In other words, as k increases, we drill deeper

and thus ϑ = k = u. We distinguish cases.

– If m = q, then a best q-approximation is already formed; by the selection of
tolerance this formation is stable. By Corollary 1, PerfBn

(h, c) > 1− ε. This
case refers to the longest medium target; that is, |c| = q + ϑ. For all other
medium targets, m = q implies u < ϑ and thus, U = pu > pϑ = 1

2 .

• If H = C, as medium targets make sense only for approximate learning,

by Section 5.1, p < 2−
1

n−1 . If H = C≤q, then p ∈ F and p < 2−
1
n . To

see this, note that q = ⌈log 1
p
( 3ε )⌉ ⇒ q ≥ 1 for any 0 < ε < 2. Hence, as

|c| = q+ϑ ≤ n, it follows that ϑ ≤ n− 1 and as a consequence p < 2−
1
n .

Note that p = 2−
1

n−1 can arise5,6 under Un, for ε ≥
3
2 and |c| = n = 2.

– If m < q, since u = ϑ, we are dealing with targets such that |c| ∈ {q +
1, . . . , q + ϑ − 1}. Hence, this case can arise when p ∈ F for k ≥ 2. Since
m < q, either |h| = m ⇒ N+ 6= ∅, or m < |h| ≤ q ⇒ r ≥ 1 ⇒ N+− 6= ∅. In
either case, in one step, evolution will proceed to the case where U > 1

2 .

• If H = C, then again by Section 5.1, p < 2−
1
n . If H = C≤q, then p ≤ 2−

1
n ;

not even the full conjunction can achieve U = 1
2 for p > 2−

1
n .

If U > 1
2 , Figure 1(c) applies. Beneficial mutations either increase good vari-

ables with additions or swaps, or redundant bad variables are removed. However,

of the target. For p < 1
2
, Figure 1(b) never applies, Figure 1(c) is again about

specializations of the target, and then we can match their 2q bound. However, we
use 3q throughout for uniformity in the analysis.

5 This example reveals another aspect of our approach. There are cases where q+ϑ ≥
n, even when H = C. Then, our method is powerful enough to perform exact learning
(there are no long targets). However, only an approximation of the target will be
returned, satisfying PerfBn (h, c) > 1 − ε. On the other hand, one can improve the
definitions of ϑ in Table 2 and in (11) by setting ϑ = min{n− q, ⌊log1/p(2)⌋}; we did
not do so for simplicity in the presentation.

6 Also, p can be arbitrarily close to 1. For k ∈ N
∗, p = 2−

1
k ⇒ ϑ = k. Let, ε = 3

4
⇒

q = ⌈log 1
p
(4)⌉ = 2k. Then, for n ≥ 3k, we look at the conjunction with size 3k.



there can be at most q removals of bad variables. Further, the set of good vari-
ables can be augmented at most q times through beneficial mutations. Thus, a
best q-approximation is formed within at most 2q generations.

As a summary, in the above process m is non-decreasing. Thus, there can be
at most q additions of good variables and swaps combined. Further, there can be
at most q+q = 2q beneficial additions or deletions of bad variables. Hence, after
at most q+2q ≤ 3q generations, a best q-approximation of a medium target will
be formed. That formation is stable. By Corollary 1, PerfBn

(h, c) > 1− ε.

6.3 Short Initial Hypothesis and Long Target

ϑ = ⌊log 1
p
(2)⌋ ⇒ ϑ > log 1

p
(2p). For long targets, u ≥ 1 + ϑ⇒ U = pu ≤ p1+ϑ <

plog1/p(2) = 1/2. Thus, we have U < 1
2 , corresponding to Figure 1(a). Beneficial

mutations are additions of variables or swaps. As long as |h| < q, then N+ 6= ∅.
Hence, after at most 2q generations a hypothesis of size q will be formed. By the
selection of tolerance, the mutations in N− are deleterious. Thus, evolution will
wander among hypotheses of size precisely q. By Corollary 2, PerfBn

(h, c) > 1−ε.

6.4 Medium or Long Initial Hypothesis

With Õ (·) we ignore polylogarithmic terms; however, we do not ignore q, as q
is the frontier of our search and the maximum size of the shortest explanation.
As long as |h| > q the neighborhood is N = N− ∪ {h}. Tolerance is tu from (9);
every hypothesis in the neighborhood is neutral. Thus, with probability at least
1− δ/4, in Õ (n) generations we arrive at a hypothesis of size q.

7 Sketch of Complexity Analysis for Evolution

Evolution in C≤q. Evolution lasts for 3q generations. |N | = O (nq) ⇒ cnq2

queries are enough, for some c > 0. Table 1 computes A = min 6=0{A (u)}; by
(8), µ = min{2pq+ϑ, A}. By (8), tolerance is t = tℓ. Requiring O

(
1
t2 · ln(n/δ)

)

samples per hypothesis tested, it follows by Hoeffing’s bound and a union bound
argument that the performance of each hypothesis in this phase is computed
within ǫs = t of its exact value with probability at least 1− δ/2.

Theorem 2. Let Bn be a binomial distribution with 0 < p < 1. Starting with
a short initial hypothesis and considering hypotheses in C≤q, the swapping algo-

rithm, using total sample size Õ
(
nq2/t2ℓ

)
, in at most 3q generations, will evolve

a hypothesis h such that PerfBn
(h, c) > 1− ε, with probability at least 1− δ/2.

Evolution in C>q. With a Chernoff bound argument, selecting from the neu-

tral set when all hypotheses are present there, for Õ (n) generations, then with
probability at least 1− δ/4, evolution will form a hypothesis of size q.

On the other hand, by (9), tolerance t = tu. Requiring O
(

1
t2 ln(n/δ)

)
samples

per hypothesis tested, with a combination of the Hoeffding bound and a union



bound argument, the performance of each hypothesis is computed within ǫs =
t/4 of its exact value, with probability at least 1− δ/4.

Theorem 3. Let Bn be a binomial distribution with 0 < p < 1. Starting with a
long initial hypothesis and considering hypotheses in C, the swapping algorithm,
using total sample size Õ

(
nq2/t2ℓ + n2/t2u

)
, in Õ (n) generations, will evolve a

hypothesis h such that PerfBn
(h, c) > 1− ε, with probability at least 1− δ.

8 Further Remarks

With a drilling technique, we examined a local search algorithm for the evolution
of monotone conjunctions under binomial distributions. We identified differences
between H = C and H = C≤q that had to do with the sample size as well as with
the overall design and adaptation of the method. Also, on an instance of dimen-
sion n, using H = C≤q, we are able to cover a wider spectrum of distributions.

Our analysis assumed rational p but can be extended to any real value. We
outline the extension; details will be given in the full version. For example, let

p > 1
2 and p ∈ [l, r] ⊂ (2−

1
k , 2−

1
k+1 ), for rational l and r. Setting q = ⌈log 1

r
(3/ε)⌉

and θ = ⌊log 1
r
(2)⌋ = k, Corollaries 1 and 2 hold for the p of the distribution. Con-

sideringH = C≤q, we need a lower bound for tℓ that works for all p ∈ [l, r]. Notice
that A = min 6=0{A (u)} = min

{∣∣1− 2lk
∣∣ ,
∣∣1− 2lk+1

∣∣ ,
∣∣1− 2rk

∣∣ ,
∣∣1− 2rk+1

∣∣}.
Hence, µ in (8) is the minimum between A and 2pq+ϑ. Note also that l = rb for

b ≤ 1 + 1
k . Then, for any p ∈ [l, r], pq ≥ lq = rbq ≥

(
r ε
3

)b
≥

(
ε
6

)2
and pϑ ≥ lϑ =

rbϑ ≥ 2−b ≥ 1
4 . Thus, µ = min{ ε

2

72 , A}. Further, tℓ ≥ lq−1µ(1− r) ≥ ε2

36lµ(1− r).
Similar arguments can be made if p ∈ F or if p < 1

2 thus treating uniformly all
real values of p in an appropriate interval with rational endpoints.

Concluding, Valiant’s model for evolution poses interesting questions even for
concept classes that have been studied extensively in learning theory. Perhaps
the most distinctive difference between evolvability on one hand and traditional
optimization and EAs on the other hand, is that the evolutionary mechanism has
access to fitness comparison oracles that have bounded and unbounded precision
respectively. Such a distinction on comparison oracles can have independent in-
terest, as for example in [1]. In the case of evolvability, having bounded precision
on the comparisons is an artifact of sampling. By trying to understand evolu-
tion using local search when the fitness values are corrupted by noise, we have
additional results that we will explore in subsequent papers. Finally, studying
the method in different computation models or by restricting the parameters on
real algebraic numbers might be a problem of independent interest.
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