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1 Introduction

This project focuses on parallelizing a Monte Carlo method on modern multi-core processors
with the use of PTHREADS library. A description of the mechanics of the computational problem
can be found in section 2. The reader may refer to [5] hosted in [9] for more details about the
problem as well as pointers to other related practical problems. The computational goal is to
compute the probability distribution of various events given their weights and an underlying
model which also influences their appearences. Experimentation results are presented in section
4 indicating the speedup as well as the efficiency achieved in practice on a dual core machine.

2 A general framework for the problem.

There is a group of resources R; |R| = N. There is a basket B with M < N slots; each slot
si is composed by k pockets which is constant for all slots. There is also a weight function
wg : R — N, which depends on the basket B. We place resources into pockets, subject to the
restriction that all k pockets in the same slot have the same resource. Moreover, different slots
contain different resources. Initially 1 pockets are non-empty (either in the same or in different
slots). Now we have the following game. The game is played with rounds. It lasts (M -k —1)
rounds and at each step we assign a resource to one of the pockets. A sequence of (M -k —1)
rounds forms an episode. At each step (round) there are two options (resources) and the player
picks one of them to be added into the basket B. The way the two options are presented to the
player is determined by the weight function wg and some underlying model. For the moment
let’s forget about the model. The two options, say a and b are presented as follows: a (left
option) is a resource that can be found in some slot of the basket, but not all k pockets of
that slot are full so far, while b (right option) is a resource that can not be found in any slot
(pocket) of the basket so far. In the case where all k pockets are full for the resources occupying
all j < M slots, then both a and b are resources that have not been selected so far. In the
case where all M slots have filled at least 1 pocket, then both a and b are selected among the
resources already in the basket for which there is an available pocket.

2.1 The main computational problem.

The user has a strategy (preference) when selecting resources. The computational goal is to
determine the probability that each resource has to be in the basket at the end of the game
according to user’s strategy for various strategies.
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2.2 How does the model affect the options.

There are some groups of resources, possibly all with different cardinality. Each group g has
a period pg. Now, if pg — 1 steps of the game have been played and no resource v € g has
been offered as an option, then on the next step of the game, we have an exception and one of
the resources in g will be offered. The probability for each resource r € g to appear is again
dependent on wg. If two (or more) exceptions coincide, then, there is a hierarchy function h
which determines which exception will be enforced. All other exceptions are stored as exceptions
for the next step.

2.3 The real deal.

The practical problem that gave rise to the above general framework comes from a computer
game that is actively played worldwide; Heroes of Might and Magic II1. The resources are skills
that can be obtained by a hero controlled by the user. The basket slots are the available slots
for different skills and the pockets reflect the level of expertise of each skill. In most cases
it holds |R| = N =28 M = 8 k = 3, and | = 2, with some minor variations on k and 1 on
their starting values. Moreover there are 3 known groups of skills, one of them (WISDOM)
containing 1 resource (wisdom) with period py = 6, the other (MAGIC) with 4 resources (air,
earth, fire, water) with period p, = 4, and the third (REST) containing 23 resources with
p3 = co. The sets are disjoint. wg (1) €{0,1,...,10}, for any r and B.

2.4 Solving the problem.

Apart from some naive strategies followed by the user, most of the strategies, and especially
those closer to real human games, imply state spaces that are huge for brute force approaches
even by modern computers. In order to counter the curse of dimensionality at least for prac-
tical purposes, a Monte Carlo method approach is followed in order to compute the implied
probability distributions in these cases. The (serial/single-core) work that has been done so
far can be found in [4] which is hosted in [2]. Brute force results on a naive selection strategy
can be found in [3]. The results from the approach in [3] are good validators on the estimates
that are generated by the Monte Carlo implementations (either the serial one or the parallel
one considered here).

3 Working in parallel.

In [1] Monte Carlo approaches to problem solving are characterized as “embarrassingly parallel”.
Of course this is true since independent runs can be performed in parallel; however, on the
practical side there might be some loss in the expected speedup since we want random sequences
with good statistical properties for all processors (cores) that are working in parallel.
Fortunately though, in the problem we are facing, we can still exploit the builtin C/C++
rand() function for the various “random” sequences that are required in independent runs.
The reason is that we have an easy upper bound on the calls made to the rand () function on
each episode generated. Typically heroes have all 8 skills at expert by level 23, which implies
22 level-ups, and therefore at most 2 - 22 = 44 calls to the rand () function per simulation run.
Hence, if the user requests an estimate for the probability distribution of various skills under a
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specific strategy as this is evaluated after n episodes, we know for sure that calls to the rand ()
function are no more than 44 - n.

Hence, the current implementation generates a sequence of length 44n with random numbers
that can be used later on worker threads in the obviously parallel part of the problem. For
this purpose a distinct queue is devoted to each of the t threads, and [44n/t] elements are
inserted in each queue. The rest (if any) 44n mod t elements are assigned to the thread with
the smallest possible id. In order to hide the latency of the generation of the worker threads
(those that perform the Monte Carlo simulation), the threads are spawned and wait for a signal
in order to start working. Some preliminary implementation results indicate that the practical
computational cost of an episode (a single simulation run) is computationally equivalent to the
generation of about 15 random sequences of length 44 each. Hence, during this first phase of
the algorithm we might have to store in memory numbers in the order of 44n, where n is the
requested amount of episodes.

Note that numbers returned by rand() lie in the interval {0,1,...,231" — 1}, and therefore
a 4-byte integer is required to store each one of them, meaning memory requirements of order
176n (in bytes). Typical values for n are a few millions, which in turn implies worst case
memory requirements a multiple of 176 megabytes. Moreover, remark 3.1 indicates that we
can not truncate these numbers and store them in variables of type unsigned char (1 byte)
for example, by storing the remainder of those values with 256 or in the more intuitive form
mod 112 (112 is the sum of all weights of the various skills per hero).

Remark 3.1. Note that (4 mod 3) mod 2 #4 mod 2.

In other words, we have no guarrantes that the truncated sequence still preserves good statistical
properties, since the partial computation we perform in order to save memory space, in effect
alters the properties of the sequence!. In a nutshell the phases of the algorithm are:

Phase 1: This phase lasts as long as a generator thread? produces a random sequence of
appropriate size required by all simulation runs by the various worker threads. As soon
as a subsequence of the appropriate size is generated, the thread that is waiting for that
input is signalled to start working.

Phase 2: Once the generator (main()) finishes with the production of all the subsequences
needed for the various queues, the main() waits for any remaining threads to complete
their work and report their results.

Phase 3: In this final phase the results are merged and are presented to the user.

3.1 The data structures.

Before I procceed with the actual experimentation I will comment briefly on the data structures
that are used to pass data to various threads.

Although, the current implementation does not use a generator thread for the entire random
sequence which is split to various queues, the data structure is still used in the main() function
for possible extensions in a future release. The structure has the following form:

IThis is also verified with the results obtained in practice.
2Actually in the current implementation the main() function is used for this purpose, so that the overhead
of the generation of one additional thread (the generator) can be avoided.
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typedef struct {
pthread_mutex_t ** queue_mutex_array;
pthread_cond_t ** queue_cond_array;
QUEUE_PTR * queue_array;
bool ** waiting_array;

int id;

int items_per_chunk;
} GENERATOR_DATA;

queue mutex_array is an array of pointers to muteces of size WORKER_THREADS; i.e. of size equal
to the number of threads that perform the simulation runs. Similarly, queue_cond_array is
an array of pointers to condition variables of size again WORKER_THREADS. queue_array is an
array of pointers to queues used for storing the necessary subsequences for the various worker
threads. Obviously its size is again WORKER_THREADS. waiting array is an array of pointers
to boolean variables again of size WORKER_THREADS. Variable id stores the unique id of each
worker thread, and finally items_per_chunk is equal to 44 since this is the length of the smallest
sequence needed to be generated so that a single simulation can take place.

Regading the data structure that is used by the worker threads we have:

typedef struct {
pthread_mutex_t * queue_mutex;
pthread_cond_t * queue_cond;
QUEUE_PTR queue;
bool * waiting;

int id;

pthread_mutex_t * total_episodes_mutex;
long unsigned int * total_episodes_atm;
long unsigned int total_episodes_computed_by_threads;

long unsigned int episodes_to_compute;

MONTE_CARLO_PTR myMC;
MT_PTR myMT;
} WORKER_DATA;

The first five variables were explained in the above paragraph. Note that in this case, threads
are not passed arrays of pointers, rather than the actual pointers that interest them. The
next three variables are used in order to print a message online indicating the percent of the
work done at any given time. Variable episodes_to_compute denotes how many runs should
be performed by the specific thread. Finally, the last two pointers are used to refer to the
MonteCarlo object and its associated mathematical toolbox which respectively perform the
simulation and store the results of each run.
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3.2 One more note on the implementation

A variation of the above program was also implemented. The structure of this variation was
based on a single queue accessed by all the processes on demand right from the beginning of
the execution. However, it turned out that in practice the overhead required for locking and
unlocking a mutex so that each thread can talk to the queue resulted in about 5-10% performace
loss with respect to the results presented in section 4. Hence this approach was abandoned.

3.3 Where can I get this version?

The program is uploaded in its natural location which is [4].

4 Experiments and results.

Experimentation and measuring running times has been more than a challenge. All running
times presented below were measured on a MacBook Pro with an Intel Core 2 Duo processor
with 2 GB of RAM and 4 MB of 12 Cache. Both the serial program and the parallel one (with
threads) were compiled with gcc version 4.0.1 :

$ g+t+ -v

Using built-in specs.

Target: 1686-apple-darwin9

Configured with: /var/tmp/gcc/gcc-5465716/src/configure --disable-checking
-enable-werror --prefix=/usr --mandir=/share/man
--enable-languages=c,objc,c++,0bj-c++
--program-transform-name=/"[cgl [*.-1*$/s/$/-4.0/
--with-gxx-include-dir=/include/c++/4.0.0 --with-slibdir=/usr/1ib
--build=i686-apple-darwin9 --with-arch=apple --with-tune=generic
--host=1686-apple-darwin9 --target=i686-apple-darwin9

Thread model: posix

gcc version 4.0.1 (Apple Inc. build 5465)

$

However, it turns out that apple architecture above produces a very smart version of the
serial implementation which perhaps exploits partially both cores while executing; the user can
actually verify on the Activity Monitor that the program changes cores while executing. In
the respective makefiles that were used in both cases, the requested machine architecture was
the deprecated x86-64. Both programs were compiled at optimization level 3.

Table 1 presents running times for some sample heroes on the AR and AL policies (strategies)
for 5,000,000 episodes (runs). The heroes were chosen according to the state-space that they
imply in various cases. Thane, Crag Hack, and Rashka are all heroes starting with only 1 skill.
What differentiates them is that Thane can acquire 27 out of the 28 possible skills, Crag Hack
can acquire 26 out of the 28 possible skills, while Rashka is a class on it’s own in the sense that
he is the unique mighty hero that starts with Wisdom, which forms an exception group on its
own. Apart from them, Orrin and Ivor are both heroes starting with two skills where Orrin can
acquire 27 out of the 28 possible skills, while Ivor can acquire 26 out of the 28 possible skills.
These heroes are representatives for equivalence classes (w.r.t. the induced state-space that has
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to be explored) that span all the mighty heroes. Note that magic heroes are not supported
even on the serial implementation. In figure 1 one can view the speedup achieved in each case.

H Serial Threads
ero AR | AL | AR | AL
Thane 65.76 | 71.00 || 37.34 | 38.96

Crag Hack || 64.69 | 71.70 || 37.29 | 41.95
Rashka 65.53 | 71.86 || 37.09 | 38.71
Orrin 63.87 | 70.92 || 36.87 | 38.88
Ivor 63.89 | 71.24 || 37.04 | 38.83

Table 1: Running times (secs) for simulating 5 million episodes.

Hero Speedup
AR | AL Similarly, figure 2 records the efficiency
Thane 1.76 | 1.82 achieved in each case. Apart from the policies
Crag Hack || 1.73 | 1.71 shown above, ALTP and SPOU are also sup-
Rashka 1.77 | 1.86 ported. The reason that they are not included
Orrin 1.73 | 1.82 in the above tables boils down to the fact that
Ivor 1.72 | 1.83 both of these strategies expect additional input

by the user as to his selection on skills. Hence,
it was difficult to generate a file that can be
used for this purpose and simultaneously cover all of the above heroes, as well as have some
meaning with the actual preferences of the users’ on various skills. Nevertheless, some prelim-
inary results indicate that in these more complex and interesting skill-selection strategies the
speedup as well as the efficiency achieved is boosted, w.r.t. the values above. As an example,
Damacon and Gunnar on an identical preferences file have achieved a speedup of 1.93 or in
terms of efficiency 0.97. The terminal output of the above experiments is available online in
[4]. Refer to the Home Log near the end of the homepage to retrieve the output.

Figure 1: Speedup achieved.

5 Future work.

Efficiency
The first and foremost concern of practical im- Hero AR | AL
portance is to port the above approach under Thano 083 1 0.91
Windows, since this is the native platform of Crag Hack || 0.87 | 0.86
the game and the area where the r.nain. aud'i- Rashka 089 1093
ence lies. [6] seems to be the solution in this Orrin 087 1091
direction; yet needs to be tested. Tvor 0386 1092

Another thing that might need further con-
sideration was mentioned in section 3. At the Figure 2: Efficiency achieved.
moment, the algortihm spends its first phase
with a single thread producing one big random sequence, that is decomposed in smaller subse-
quences which are lead to the queues serving the threads that actually perform the computa-
tional task. Another approach would be to use a library that allows distinct random number
generators per thread; e.g. [8, 7]. This would eliminate some overhead, and parallel execution
would be much more efficient regardless of the decisions of the scheduler. Moreover, each dedi-
cated random number generator would produce numbers on a per-request basis, and as a result
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the entire process would now be actually embarrassingly parallel. But the most important prac-
tical contribution of this approach would be the fact that the enormous (practical) memory
requirements would be diminished. On the other hand, the efficiency of those generators with
respect to the rand () function remains to be tested in practice and verify that they are a viable
solution for this purpose.

Other approaches might also be considered in such a way as to eliminate the possibility

that the scheduler delays our generator (of random numbers) thread. In this direction it might
be useful the fact that we can get the number of cores of a specific machine with the command
sysconf (_SC_NPROCESSORS_CONF) of the unistd.h library.
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