

A GML-Based Open Architecture for Building a Geographical Information
Search Engine Over the Internet

Jianting Zhang Le Gruenwald

The University of Oklahoma, School of Computer Science, Norman, OK, 73019
Contact author email: ggruenwald@ou.edu, Phone: 1-405-325-3498

Abstract

This paper proposes an open architecture for

building a geographical information search engine
over the Internet based on the Geographical Markup
Language (GML). It recognizes the autonomous and
heterogeneous nature of the current practice of the
Internet by adding GML-enabled wrappers for
distributed servers and a mediator tier. The paper then
presents a prototype based on the proposed open
architecture using the University of Oklahoma's
student addresses.

1. Introduction

Today's Web contains a great deal of
information that can be geo-referenced. The National
Academy of Sciences estimates that 80 percents of
the information on the Web have a spatial component
([HREF 1]). These include coordination information,
such as latitude/longitude and their various kinds of
projections, mailing addresses that can be geocoded,
and relative distance/direction information.

With the widely applications of personal
portable communication and computation devices,
such as cell phones, GPS devices, PDAs, and Palms,
geo-referenced information (GRI) and applications are
undergoing significant changes. The volume of
personal GRI, such as location and moving direction,
produced by GPS devices and cell phones, has a
much greater volume than traditional GRI, such as
street map and cadastral information. It is highly
unlikely that this kind of personal GRI can be
collected and managed by a centralized system.
Instead, it is often embedded in various forms of
documents, such as HTML pages, in an autonomous
and distributed fashion. We believe that a
geographical searching engine over the Internet,
which is an extension of the current text -based search
engines, such as Google ([HREF 2]) and Altavista
([HREF 3]), is highly desirable.

In this paper, we propose an open
architecture based on Geographical Markup
Language (GML) for building a geographical
information search engine over the Internet. The
architecture consists of three tiers: Distributed
Servers, Mediator and Clients. A Distributed Server
has software agent(s) to roam over the Web sites in
the designated categories, parses Web pages to
retrieve GRI and stores them in its local database. A
Distributed Server is also responsible for wrapping
GRI into a GML document when being requested from
either a Client or the Mediator. The Mediator accepts
requests from a Client and breaks the query into sub-
queries and sends them to the corresponding
Distributed Servers. Through a negotiation
mechanism, the Mediator either accepts the query
results from a Distributed Server in the GML format,
or retrieves data set periodically from the Distributed
Server and performs spatial queries on its own
database on behalf of the Distributed Server. The
Mediator wraps the query results into a GML
document and sends it back to the Client. The Client
accepts the user’s queries interactively. It
communicates with the Mediator or the Distributed
Servers directly and renders the query results
graphically.

The rest of this paper is organized as
follows. Section 2 provides an overview of related
work. Section 3 presents the proposed architecture.
Section 4 describes a prototype implementation of the
proposed architecture using the University of
Oklahoma's student addresses. Section 5 reports the
primary experiment results of the constructed
prototype system. Finally Section 6 presents future
work directions.

2. Related Work

The Internet mapping of geographical data,
such as MapQuest.com ([HREF 4]) and Excite.com
([HREF 5]), has provided GRI access through the
Internet and is increasingly gaining popularity. Major

Geographical Information System (GIS) vendors, such
as ESRI ([HREF 6]), MapInfo ([HREF 7]), Intergraph
([HREF 8]) and AutoDesk ([HREF 9]), provide
software components to publish geographical data
online. An overview of Internet Mapping is presented
in ([3], [10]). Usually the GRI in such systems is
searchable either by keywords or positions. However,
data as well as software in such systems are
proprietary and completely controlled by vendors. In
addition, the generated maps usually either in image
formats (GIF/JPEG) or embedded objects in browsers
which make it very difficult, if not impossible, for
users to integrate search results from different
systems or with other applications. The best-known
academic project in the Internet mapping field is
Alexandria Digital Library Project ([HREF 10]) funded
by the NSF digital library program. In this project,
collections of geographically referenced materials and
services for accessing those collections are
developed. A Gazetteer Server with a GUI is also built
to map a place name onto an image. However, all the
place information is static and does not associate with
any Web pages. In general, the current Internet
mapping technologies are mostly for GRI publishing
in a centralized manner and not for gathering GRI over
the Internet which is autonomous and distributed in
nature.

Location-based Services (LBS) is an
integrated technology of telecommunication and GIS.
The key idea of LBS is that a portable device sends its
location information to a gateway, the gateway search
through its database to find the most relevant
information near the location and sends it back to the
client for further use. A problem with this technology
is that the gateway must maintain a centralized GRI
database to support queries. For example, OpenWave
system ([HREF 8]), a product from Phone.com,
requires every website to report its geographical
location to its gateway in order for the website to be
accessed by its mobile devices. This solution requires
a well-established GRI infrastructure while anything
not registered in the central database will not be
accessible to end users. A more formal and open
solution that specifically focuses on GRI
infrastructure is proposed by SRI International
([HREF 1]). They proposed a new Top-Level Domain
Name (TLD) named “.geo”. According to their
suggestions, the earth is divided into 1 by 1 degree
cells and each cell has one or more GeoRegistries. All
URLs register their geographical locations with these
GeoRegistries and the GeoRegistries provide services
to all GRI requests. However, the proposal is recently
rejected by The Internet Corporation for Assigned
Names and Numbers (ICANN, [HREF 12]) ([HREF

13]). From a practical perspective, one major
shortcoming of the “.geo” TLD proposal is that it
does not address the issue of how to deal with text -
based GRI such as mailing address, which is more
relevant to and widely used in our everyday life.
Again, anything not registered in the central database
will not be accessible to the end-user. In general,
although LBS/TLD technologies provide mechanisms
to gather and distribute dynamic GRI in real time, they
still adopt a centralized architecture, which is not
suitable for gathering geographical information from
autonomous and distributed websites.

There has been a large volume of research in
document classification ([5], [8]) and building search
engines ([4], [6]). In practice, several popular search
engines roam over the Internet to collect information
and make it searchable. However, most of them only
retrieve text information for keywords matching and
do not support searching geographic information.
Google attempts to support finding maps based on
given addresses ([HREF 14]); however, it has no built-
in mechanism to interpret addresses. What is does,
basically, is still one-to-one word matching. For
example, if we search by “1307 George Ave, Norman,
OK, 73072”, it will match both phone numbers and
addresses that have “1307 “ in them. Most searched
results are irrelevant to what the user wants because
word matching does not take any semantics or
geographical context into consideration.

A bridge between text -based GRI (such as
mailing addresses) to coordination based GRI (such
as latitudes/longitudes) is a technology called
Geocoding or Address Matching ([2]). Geocoding is
essentially a special natural language processing
(NLP) problem. Although currently there are a few
commercial software products available ([HREF 15],
[HREF 16]), few research papers focus on this topic.
Recently, the Open GIS Consortium (OGC, [HREF 17])
has unofficially released Geocoder Service
Specification ([HREF 18]) and is expecting
implementation compliances in the near future.

To manage geographical information that is
essentially a special type of spatial information,
spatial data access and analysis methods are needed.
Spatial index methods, such as Quad-tree and R-trees,
are well studied in academia ([7]). However, few
mainstream commercial database software products
support spatial data access. Oracle Spatial Option is
one of them that supports Quad-Tree/R-tree indexing
methods ([HREF 19]). Spatial analysis methods, such
as distance/direction analysis, buffer analysis,
topological analysis, network analysis, and terrain
analysis, are well studied in the GIS field and
implemented in many commercial GIS software

packages. However, these software packages are
usually standalone and do not provide a good
integration mechanism with mainstream database
software. Its major problem is that different GIS
software vendors have different geographical data
formats that result in poor interoperability.

XML-based data integration architectures
([1]) are becoming more and more popular since XML
is a kind of text -based protocol that is easily
processed and exchanged between users. GML,
which is an extension of XML, is proposed by OGC to
solve the GRI interoperability problem ([HREF 20]).
Several spatial data types, such as point, polyline and
polygon, as well as earth projection types are defined
in GML DTD. Any software that supports GML can
use geographical data in a GML document. An XML-
based spatial data mediation infrastructure for global
interoperability study is conducted in San Diego
Supercomputer Center ([9]). Based on GeoXML,
which is similar to GML but using a smaller DTD set,
we also proposed and implemented a
wrapper/mediator architecture to visualize integrated
geographical information ([10]). However, data used
in both studies is pre-collected and does not make
use of rich GRI over the Internet. In contrast, in this
study, we build software agents to roam over the
Internet to collect geo-referenced information.

Proposed System Architecture

The overall architecture of the system is
shown in Fig. 1. The system adopts a three-tier
architecture: the first tier is a distributed server. A
distributed server has three components: a software
agent, a local database and a wrapper. The software
agent roams over all the websites being assigned
according to a predefined schedule, retrieves all the
GRI and their associated text information in the Web
pages and then stores them in its local database.
Since the majority GRI involved is of point type, the
database could be relational database, object-oriented
database or object-relational database. If the database
supports geographical information accesses and
queries, it should register this information in the
mediator that we will describe below in detail. The
wrapper extracts the relevant data from the local
database and transforms it into the GML format when
a valid request is received.

The second tier is the Mediator. Whenever
the mediator receives a request from a client, it first
determines which distributed server(s) is involved
and breaks the query into sub-queries. It then finds
the corresponding distributed servers in its meta-

database. If the corresponding distributed server
supports spatial data access and query, the Mediator
then just sends a sub-query to the distributed server.
If not, the Mediator checks the most recently data
received from that distributed server. If the time span
is within tolerance, the Mediator queries the
duplicated data on that distributed server’s behalf in
its own database; otherwise it updates the duplication
first before query. The mediator then sends the
integrated query results also in the GML format back
to the requested client.

Figure 1. Proposed System Architecture

The third tier is the Client side. It supports
geographical data visualization based on spatial
queries. The client side communicates with the
Mediator in real time and retrieve GML documents
from the Mediator. The user can use Zoom In and
Zoom Out to focus on different levels of details.
Besides visualization functionalities, textual
information associated with geographical locations is
also displayed in the Client’s browser and hyperlinks
can lead the user to corresponding web pages.

Note that we use GML as the common
communication protocol between the Distributed
Servers and Mediator as well as between the
Mediator and the Client. We have implemented a
GML wrapper for flat file in our previous study ([10]).
To make our work more general, in this paper we

Distributed Server k

GML

Client: GUI for Visualization and Spatial Query

Mediator for integration

MetaDB Replica Query Engine

Negotiation

Category 1 Websites

Distributed Server 1

Website 1

Website m

DB Wrapper

Agent

HTML

GML Negotiation GML

Category k Websites
Website

Website n

DB Wrapper

Agent

HTML

implement GML wrappers for relational databases and
object-relational databases.

A Prototype Implementation

Motivation of the prototype

Our first motivation in building the prototype
is from the student contact information searching
system at the University of Oklahoma with which the
authors are associated ([HREF 21]). Given a full or
partial student name, the system is able to return the
full student name, email, status, college, street
address, city, state, zip code and phone number.
However, the system does not allow a user to perform
queries on spatial relationships like “Search all the
freshmen that are less than 5 miles away from me” or
“List all the graduate students who live around the
Parkview apartments”. Our prototype system first
retrieves student names from the university list at
http://students.ou.edu and then sends the retrieved
student names to the university’s search engine
([HREF 21]) to retrieve the student information and
stores it in our databases. The addresses are then
geocoded using a commercial geocoding product
from MapInfo ([HREF 7]). GML wrappers, mediator as
well as client side visualization tool are built to
demonstrate our ideas which will be explained in detail
in the following sub-sections.

For demonstration purposes, we build two
distributed servers to retrieve the information of
students whose last names begin with “A” and “B”,
respectively. In our prototype system, one distributed
server uses Microsoft SQL Server 2000 and the other
distributed server uses Oracle 8.1.7. The mediator
uses Oracle 8.1.7 to provide spatial query and
analysis functions. All the modules, including
software agents, wrappers, mediator and client
component in our prototype system are written in
Java.

Software agents for collecting geographical
Information over the Internet

The procedure is as follows: the software
agent of the distributed server first sends a request to
the designated websites. Then it parses the returned
HTML pages into trees using html parser classes in
SWING provided in JDK Enterprises Edition v1.3 from
SUN ([HREF 22]). The agent then tries to find the
student address information based on both the
retrieved HTML page structure (such as the hierarchy

of HTML tags) and keywords (such as “Address”).
The addresses are then geocoded into
longitude/latitude and stored in the corresponding
databases in the distributed servers. The general
process is shown in Fig. 2.

Figure 2. Process of Retrieving Geographical
Information from HTML Pages

Generic relational database systems, such as

Microsoft SQL Server, do not support user defined
data types. For the distributed server that uses SQL
Server, the coordination information is stored in two
separate table columns. Most Object-Relational
databases, such as Oracle 8i ([HREF 19]), either
support user defined data types or have predefined
object types. In our implementation, for the

Open an InputStreamReader to read the HTML page

Build an HTMLEditorKit to process the HTML page

Create a Document from the kit to represent the page

Bind InputStreamReader and Document

Go through the hierarchy of HTML document tree

Get tag name, tag values and textual data

Parse the textual data

End

Open an URLConnection for a given URL

Name, email,
status, college

Street address, city, state, zip

longitude/latitude

Address Info

Geocoding

Validation

Database
update

Phone

distributed server that uses Oracle 8i, the
coordination information is stored as the Point that is
a predefined object type in Oracle 8i Spatial.

GML Wrapper for Relational Databases and
Object-Relational Databases

To build a wrapper that converts
geographical data from databases to GML for both
relational database and object-oriented databases, a
Java Servlet similar to our previous work in wrapping
flat files to GeoXML is developed ([10]). The wrapper
Servlet first communicates with SQL Server /Oracle 8i
through JDBC-ODBC bridge or Oracle JDBC to
retrieve the query results and then transfers the query
results into a GML document.

Since SQL Server does not have any
extensions to support spatial data types and does not
support GML directly either, we have to retrieve the
student information from the SQL Server database
record-by-record and add it to the GML document
tree. Also, since SQL server does not support spatial
queries, the mediator must communicate with it
constantly to retrieve the newly added student
address information and store it in the mediator’s
database which supports spatial queries. The
mediator performs spatial queries on the wrapper’s
behalf in this case.

Oracle is a well-known object-relational
database. Although Oracle spatial option stores
geographical data in its relational tables, it allows the
user to store and retrieve geographical objects such
as point, polyline and polygon. It provides spatial
access methods such as R-tree, and thus is able to
perform spatial query and analysis. The client and the
mediator can issue any SQL query to Oracle and get
results back in GML format.

The advantages for wrappers to support
spatial queries are: (1) there is no duplication of data
between the mediator and the distributed server since
no mirror database is needed. (2) The client or the
mediator always gets the most recent data. (3) Data
transfer overhead is also reduced since the resulted
GML documents of specific queries are much smaller
than retrieving all the data from a wrapper at once.

Building a Spatial-Enabled Mediator

We build the mediator on top of Oracle 8i
with Spatial Option. The mediator stores the metadata
of all the distributed servers, such as the URLs of the
distributed servers, categories or regions of the Web
sites that they are responsible to roam over, whether

they are active or not, whether they support spatial
queries, and when the last time they communicate
with the mediator. The mediator also has tables to
store geographical entities and their associated
student information from those distributed servers
that do not support spatial query and analysis.

Figure 3. Process of building GML Mediator

The process of builing the GML mediator is

shown in Fig. 3. First the mediator accepts a client
request and breaks it down into sub-queries to the
related distributed servers according to the metadata
stored in the mediator. For each sub-query, the
mediator checks whether the corresponding
distributed server supports spatial queries. If it does
support spatial queries, then the mediator simply
sends the sub-query to the distributed server and
gets the returned GML document. If not, the mediator

Send request to distributed server

Update Mirror DB in Mediator
with returned GML document

Query on Mirror DBs in the mediator

Transfer query result into XML nodes

Output the Generated XML Document

Client Request

Check last update time

Spatial Query
Support?

Send sub-request to
distributed server

Break down the query into queries for each
distributed server involved

Is update
needed?

Yes No

Yes

No

Transfer the returned
GML document into

XML nodes

Combine all the XML nodes and associated
metadata information

End

checks the most recently data received from that
distributed server in its metadata table. If the time
span is within a predefined tolerance, the mediator
queries the duplicated data on that distributed
server’s behalf in its own database; otherwise it
retrieves the updated data from the distributed server
and stores it in a mirror database of the database in
the corresponding distributed server. The mediator
then combines the query results and sends the
integrated GRI also in the GML format back to the
requested client.

Client Query and visualization

We build a client query and visualization
Applet on top of GeoTools ([HREF 23]), an open
source software developed at Center for
Computational Geography, University of Leeds, UK.
The Applet first sends a request to the mediator using
the standard HTTP protocol taking the query string
as a parameter in the URL. The Applet then parses the
returned GML document. It sends geometric data to
the GeoTools and sends textual attribute data to a list
box for display. The Applet maintains the links
between geometric data and attribute data. This will
enable the user to query spatial locations based on
attributes, such as “Show where Jacob A Baccus is
located”, and query attributes based on spatial
relationship, such as “List the phone numbers of
freshman students whose location is within 5 miles of
the campus."

Currently, the client side Applet supports
Zoom In/Zoom Out and Full extent of geometric data
for visualization and attribute listing of textual data.
Also query results can be overlapped on base maps
(mostly administrative boundary maps and/or street
maps at different scales) that can come from either
another GML document or directly from flat
geographical data files or spatial databases. In our
current implementation, whenever the client issues a
new query, the data must be reloaded from the
mediator according to the new query. Note that this is
not necessary in some cases, such as when the data
involved in the new query is only a subset of the
result of a previous query since the client can perform
queries on the client side. We will implement this
feature in our future work.

Experiments and Results

We test our prototype system on Windows
NT 4.0 platform using JavaServer WDK (Web
Development Kit) 1.0 as the Web server and Java

SDK Standard Edition Version 1.3 as the compiler and
runtime environment. We use different virtual
directories in the same machine to simulate distributed
servers and the mediator. We test only a subset of
student contact information at the University of
Oklahoma. The agent of the first distributed server
retrieves the contact information of 198 students
whose last name begin with a letter “A” and stores it
in the local database associated with the first
distributed server. Similarly, the agent of the second
distributed server retrieves the contact information of
students whose last name begin with a letter “B” and
stores the data in the local database of the second
distributed server; there are 519 such students. From
the 198 students in the first distributed server and the
519 students in the second distributed server, we
eliminate the data of those students who do not have
a contact address or their addresses can not be
geocoded, i.e., their textual address information can
not be converted into coordination. Some possible
reasons for this to occur could be that the city name
cannot be correctly identified or there is a mismatch
between zip code and city/street.

Figure 4. Document Structure of Student Information
Query Result

Fig. 4 shows the document structure of the

student information query results returned from the
OU text -based search engine. Figure 5 shows the
wrapped GML document containing the contact
information retrieved from the second distributed

server for all students whose last name begin with a
letter “B” and displayed in the IE5.5 browser.

Figure 5 Wrapped GML document for Geocoded
Student Information

Figure 6 Client Visualization Interface

Due to space limitation, we only show one

snapshot of client visualization interface (Fig. 6). We

can see that the majority of the students live very
near to the campus. However, it is also easy to draw
the conclusion that a considerable amount of
students put their on-campus dormitories as their
contact address which are largely overlapped.
Developing more sophisticated tools for client side
visualization and query interface is under
consideration.

Conclusions and Future Work

The volume of personal geographical
information will be dramatically increased in the near
future due to the wide application of GPS devices and
cell phones. It is highly likely that this information will
be used beyond the centralized systems where it is
generated. It will be integrated into the mainstream
Web HTML files in a loosely coupled and distributed
fashion. Thus a geographical information search
engine over the Internet similar to popular text -based
information search engines is highly desirable.

In this paper, we have done some preliminary
work on proposing a GML-based open architecture
and a simple prototype implementation. Specifically,
we have done the following:

1) We proposed an open architecture to collect

geographical information using the software
agent technology and GML as the common
communication protocol. We also proposed a
negotiation mechanism between the mediator and
distributed servers.

2) We built GML wrappers for both pure relational
database systems like SQL Server 2000 and
object-relational database systems like Oracle
8.1.7.

3) We built a mediator server with full spatial query
capability by making full use of Oracle Spatial
functionalities.

4) We built client visualization interface for query
results using the open source package GeoTools.

Future work directions may include the

following:
1) Parsing more generic HTML pages and searching

for geographical information in them. Semi-
structured document processing techniques
(including Information Extraction and Information
Retrieval) as well as natural language processing
technologies (NLP) are needed for accurate and
efficient geographical information searching.

2) Geocoding methods, which are very important for
geographical information transformation and

query yet leave untouched in this paper, need to
be fully implemented in the system. It is even
more challenging when multiple languages are
considered since the expression of addresses is
highly related to language and culture in general.

3) Spatial and temporal representation of
geographical information. Currently no
commercial database system support spatial and
temporal information of an object. We need to
investigate more on Oracle as well as other
database systems to find a way to represent both
spatial and temporal aspects of geographical
information to support advanced queries. A
natural extension of this research direction is how
to deal with semantics of geographical
information that has become increasingly
important.

4) Scalability study. Considering the huge amount
of Web pages, further investigations on the
scalability of the database systems is an
important issue.

5) More flexible and better client query and
visualization functions.

References

[1] C. Baru, A. Gupta, B. Ludaescher, R. Marciano, Y.
Papakonstantinou, P. Velikhov, "XML-Based Information
Mediation with MIX", ACM SIGMOD 99, Philadelphia,
PA, USA, 597-599

[2] W.J. Drummond, “Address Matching: GIS Technology
for Mapping Human Activity Patterns." J. of the American
Planning Association. Spring 1995, 61(3), 240-251

[3] A. Hardie, 1998, “The Development and Present State
of Web-GIS, Cartography”, 27(2), 1998, 11-26

[4] A. C. Ikeji, F. Fotouhi, “An Adaptive Real-Time Web
Search Engine”, WIDM 99, Kansas City, Mo, USA, 12-16

[5] W. Lam, M. Ruiz, P. Srinivasan, “Automatic Text
Categorization and Its Application to Text Retrieval”, IEEE
Transactions on Knowledge and Data Engineering, 11(6),
1999,865-879

[6] A. Kruger, C. L. Giles, F. M. Coetzee, E. Glover, G. W.
Flake, S. Lawrence, C. Omlin, “DEADLINER: Building a
New Niche Search Engine”, CIKM 2000, McLean, VA,
USA, 272-281

[7] S. Shekhar, S. Ravada, X Liu, “’Spatial-Databases-
Accomplishments and Research Needs”, IEEE transaction
on Knowledge and Data Engineering, 11(1), 1999, 45-55

[8] C. Silverstein, J.O. Pedersen, “Almost-constant-time
clustering of arbitrary corpus subsets”, ACMSIGIR 1997,
Philadelphia, PA, USA, 60-66

[9] I. Zaslavsky, R. Marciano, A. Gupta, C. Baru, “XML-
based Spatial Data Mediation Infrastructure for Global
Interoperability”, in 4th Global Spatial Data Infrastructure
Conference

[10] J. Zhang, M.S. Javed, A. Shaheen, Le Gruenwald, “A
Prototype for Wrapping and Visualizing Geo-Referenced
Data in Distributed Environments Using the XML
Technology”, ACMGIS 2000, McLean, VA, USA, 27-32

[HREF 1] The Proposed .geo Top-Level Domain Name
executive summary, http://www.dotgeo.org/summary.html
[HREF 2] Google, http://www.google.com
[HREF 3] Altavista, http://www.altavista.com/
[HREF 4] MapQuest, http://www.mapquest.com
[HREF 5] Excite, http://maps.excite.com
[HREF 6] ESRI, http://www.esri.com
[HREF 7] MapInfo, http://www.mapinfo.com
[HREF 8] InterGraph, http://www.intergraph.com
[HREF 9]AutoDesk, http://www.autodesk.com
[HREF 10] Alexandria Digital Library Project,
http://www.alexandria.ucsb.edu/
[HREF 11] OpenWave, http://www.openwave.com
 [HREF 12] The Internet Corporation for Assigned Names
and Numbers (ICANN), http://www.icann.org/
[HREF 13] DotGeo, http://www.dotgeo.org/
 [HREF 14] Google Map Finder:
http://www.google.com/help/features.html
[HREF 15] Centrus, http://www.centrus.com/
[HREF 16] SearchSoftware USA,
http://www.searchsoftware.com,
[HREF 17] Open GIS Consortium,
http://www.opengis.org/
[HREF 18] Open Geocoding Specification,
http://www.ionicsoft.com/geocoding/geoc_schema.html
[HREF 19] Oracle Spatial User's Guide and Reference
http://technet.oracle.com/docs/products/oracle8i/doc_library
/817_doc/inter.817/a85337/toc.htm
[HREF 20] Geography Markup Language (GML) v2.0,
http://www.opengis.net/gml/01-029/GML2.html
[HREF 21] OU Student Information Search Engine:
http://infoserv.ou.edu/search/
[HREF 22] Java SDK Standard Edition Version 1.3,
http://java.sun.com/j2se/1.3/
[HREF 23] GeoTool Open Source Software,
http://sourceforge.net/projects/geotools/

