
Automatic Database Clustering Using Data Mining

Sylvain Guinepain and Le Gruenwald1

School of Computer Science
The University of Oklahoma

Norman, OK 73019, USA
{Sylvain.Guinepain, ggruenwald}@ou.edu

Abstract
Because of data proliferation, efficient access methods
and data storage techniques have become increasingly
critical to maintain an acceptable query response time.
One way to improve query response time is to reduce the
number of disk I/Os by partitioning the database
vertically (attribute clustering) and/or horizontally
(record clustering). A clustering is optimized for a given
set of queries. However in dynamic systems the queries
change with time, the clustering in place becomes
obsolete, and the database needs to be re-clustered
dynamically. In this paper we discuss an efficient
algorithm1 for attribute clustering that dynamically and
automatically generate attribute clusters based on closed
item sets mined from the attributes sets found in the
queries running against the database.

1. Introduction

Databases, especially data warehouses and temporal
databases, can become quite large. The usefulness and
usability of these databases highly depend on how
quickly data can be retrieved. Consequently, data has to
be organized in such a way that it can be retrieved
efficiently. One big concern when using such databases is
the number of I/Os required in response to a query. There
are four common ways to reduce this cost: indexing,
buffering, clustering and parallelism. While either
technique can be implemented by itself, it is obvious that
clustering is an indispensable complement to the others.
For instance it is easy to see that a buffering would be
inefficient if the underlying data was not clustered in
which case the buffer manager would spend time
swapping data pages in and out of main memory to
satisfy the queries. The same argument can be made for
indexing and parallelism. It is for that reason that our
research focuses on data clustering on disk. Clustering
can take place along two dimensions: records clustering
and attribute clustering. In this paper our focus is on

1 This work was partially supported (while serving at)
National Science Foundation

attribute clustering. In attribute clustering, attributes of a
relation are divided into groups based on their affinity.
Clusters consist of smaller records, therefore, fewer pages
from secondary memory are accessed to process
transactions that retrieve or update only some attributes
from the relation, instead of the entire record (Navathe,
1984). This leads to better query performance.

Another issue faced by today’s computing world is that
the ever-growing size and number of databases to
monitor is becoming overwhelming and human attention
has become a precious resource (Bernstein, 1998). To
solve this problem the computing world is relying more
and more on automated self-managing systems capable of
making intelligent decision on their own. The area of
autonomic computing has been getting a lot of attention
(Agrawal, 2004, SAACS, 2004; AMS, 2003, Chaudhuri,
1998). Our goal in this research is to automate the
clustering process. In this paper we describe an efficient
algorithm for attribute clustering that automatically
generates attribute clusters based on closed item sets
mined from the attributes sets found in the queries
running against the database.

The remainder of this paper is organized as follows: in
Section 2 we review the relevant literature in the areas of
traditional attribute clustering, data mining clustering and
autonomic computing. In Section 3 we describe our
autonomic attribute clustering algorithm. Finally we give
our conclusions in Section 4.

2. Literature Review

The first well-known attribute clustering technique is
credited to (McCormick, 1972) with his Bond Energy
Algorithm (BEA). The purpose of the BEA is to identify
and display natural variable groups and clusters that
occur in complex data arrays. This task is accomplished
by permuting the rows and columns of an input data array
in such a way as to push the numerically larger array
elements together. Informative permutations of the input
data array can be found via a measure of clumpiness

1
Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA'06)
0-7695-2641-1/06 $20.00 © 2006

(ME) of an array, which assumes large values when
associated with the more informative row and column
permutations. Maximizing the ME by row and column
permutations serves to create strong ‘bond energies’ by
driving the larger array elements together. The main
problem with the BEA algorithm is that when the
resulting matrix is in block diagonal form it is hard to
determine how many clusters there are and what
attributes they contain. The interpretation is subjective
and therefore requires human input and cannot be
considered reliable.

Navathe’s Vertical Partitioning (NVP) (Navathe, 1984)
improves upon BEA by providing a two-phase algorithm
to determine the vertical partitions. NVP starts by
building an AA (attributes affinity) matrix containing all
pairs of attributes in the database. The BEA is then used
to rearrange the rows and columns of the AA matrix such
that the value of the global affinity function is
maximized. The rearranged matrix is called the clustered
affinity (CA) matrix, which then becomes an input to the
second phase of the technique called the Binary Vertical
Partitioning (BVP) algorithm. BVP recursively partitions
the CA matrix into two halves in order to minimize the
number of transactions that access attributes in both the
halves. This technique has two drawbacks: 1) the
objective function to maximize in phase 2 is subjective
and alternative functions could produce different results.,
and 2)the solution only contains two clusters of attributes.

In the Optimal Binary Partitioning algorithm (OBP)
(Chu, 1993) the authors introduced a transaction-based
vertical partitioning technique in which the attributes of a
relation are partitioned according to a set of transactions.
Since transactions carry more semantic meaning than
attributes, this approach allows the optimization of the
partition based on a selected set of important transactions.
An optimal binary partitioning algorithm, OBP, based on
the branch and bound method, is presented with the worst
case complexity of O(2n) where n is the number of
transactions. Starting from the access pattern matrix
(attribute usage matrix), the following concepts are used
by the OBP algorithm. A self-contained fragment Ti is
the set of attributes that transaction i accesses. The union
of such self-contained fragments is called a contained
fragment. A binary cut that partitions the attributes into
two sets in which at least one of them is a contained
fragment is also called a reasonable cut. The OBP
algorithm uses a branch and bound algorithm to derive all
the reasonable cuts. A cost function is then applied to
determine the optimal binary partitioning. OBP suffers of
two problems: the number of possible partitions to
examine in order to find the optimal binary partitioning
could be high and the resulting partitioning contains only
two clusters.

(Hartuv, 2000) proposed a clustering technique based on
graph connectivity that aims at partitioning gene
expression data in the field of bio-informatics. The
similarity data is used to form a similarity graph in which
vertices correspond to elements and edges connect
elements with similarity values above some threshold. In
that graph, clusters are highly connected sub-graphs,
defined as sub-graphs whose edge connectivity exceeds
half of the number of vertices. The main disadvantage is
that the query frequencies are not taken into account. Any
two attributes queried together more often than a
threshold are linked in the graph. This implies that the
graph’s edges are un-weighted and all similarity links are
considered equal. This seldom is the case in database
applications and would result in an inaccurate solution.

(Agrawal, 2004) is Microsoft’s solution to the automatic
clustering problem. It relies on data mining techniques.
Using the attribute affinity matrix, the algorithm mines
the frequent item sets of attributes and retains the top k
ordered by confidence level. Each attribute-set forms a
binary partition: attributes in the sets and attributes not in
the set. The algorithm then determines which such binary
partition is optimal for each individual query. The cost is
obtained by creating two sub-tables corresponding to the
two clusters and running the query through the query
optimizer to obtain its cost. Then a merging step
combines the resulting binary clusterings two at a time
and evaluates the cost of all possible merged partitions. In
the end the merged partition with the best cost is selected
for the table. The authors clearly state that their goal is
“to optimize performance of a database for a given
workload”. This means that this clustering is static and,
given its ties to other database objects such as indices, it
is not possible to convert it into a dynamic solution.

Any review of clustering techniques would not be
complete without mentioning data mining clustering.
Data mining clustering groups data items together by
finding similarities in the data itself. To accomplish this
data mining clustering algorithm use a similarity measure
or distance function to determine the distance/similarity
between any two data items (Dunham, 2003). Elements in
the same cluster are alike and elements in different
clusters are not alike. Data mining clustering is not a
viable solution to solve the automatic attribute clustering
problem because it groups data items based on
similarities found in the actual data, not based on attribute
usage by queries. Thus two data items could be stored
together because they were found to be similar with
respect to a distance function but rarely be accessed
together.

As we have just seen none of the attribute-clustering
algorithm reviewed in the literature is autonomic. Some

2
Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA'06)
0-7695-2641-1/06 $20.00 © 2006

require manual and subjective interpretation of the
results; some only produce two clusters of attributes;
others use subjective parameters that result in sub-
optimal solutions if their values are not chosen carefully.
In the next section we describe our proposed attribute-
clustering algorithm. It is autonomic, can produce any
number of clusters and requires no parameters.

3. Proposed Attribute Clustering

The attribute clustering is done in four steps, which are
briefly described in this section. The detailed and
complete algorithm can be found in [Guinepain, 2006].
In Step 1, we build a frequency-weighted attribute usage
matrix. In Step 2, we mine the closed item sets (CIS) of
attributes. A closed item set is a maximal item set
contained in the same transactions. This information tells
us what attributes have high affinity, i.e., are often
accessed together. In Step 3, The closed item sets mined
in Step 2 are modified in such a way that the original
tuples can be reconstructed through a natural join after
the partitioning has taken place. We restrict the set of CIS
considered to a) CIS containing attributes from the same
relation and b) CIS containing attributes from several
relations as long as the cardinality between all the
relations containing these attributes is 1 to 1. Every CIS
that does not contain the primary key (PK) of the relation
will be augmented with the primary key attributes. Note
that if the CIS contains attributes from multiple relations
with 1-to-1 relationships, then it suffices to augment the
Frequent CIS (FCIS) with the primary key attribute(s) of
the first relation if necessary.

In Step 4, we use a branch and bound type algorithm that
examines all clustering solutions of attributes such that a
solution contains at least one cluster that is a modified
closed item set (MCIS). The solution with the lowest is
the one selected as our next vertical clustering of
attributes. The query response time is not an accurate
measure of the cost of a query since it varies with the
system load, buffering, and indexing. The cost of running
a query will therefore be given by the estimated number
of logical reads returned by the query optimizer.

3.1 Step 1: Build the Frequency-Weighted
Attribute Usage Matrix

When a query is run against the system, the following
information concerning that query is logged: the SQL
query, the time the query was executed, the attributes list
associated with the query, the query result set size in
terms of the number of tuples returned and the number
of disk blocks accessed to answer the query. The set of

queries considered by our technique will be referred to as
Q = { qi, 1 i p, where p is the total number of queries.

An example of a log entry is shown here which would
produce the first row of the affinity matrix in Table 1.

SQL QUERY: SELECT a, c, d FROM T1
WHERE a BETWEEN 1 AND 10 AND d=c
ATTRIBUTES: T1.a, T1.c, T1.d
BLOCKS ACCESSED: 4

Using the logged information, this step derives the
attributes usage matrix similar to the one in Table 1. The
attribute usage matrix contains a row for each query
considered by our technique and a column for each
attribute in the database. If a query requests a particular
attribute, the intersection of the query row and the
attribute column will contain a “1”, and "0" otherwise.
The cost of building and updating the first matrix is linear
in terms of the number of entries in the log.

Attributes
Queries

a b c d e f
Record
set size

Query
frequency

(%)
q1 1 0 1 1 0 0 15000 10
q2 1 1 1 0 1 0 36200 20
q3 0 1 0 0 1 0 32000 30
q4 0 1 1 0 1 0 34300 40

Table 1: Example of an Attributes Usage Matrix

The attributes in this example are defined in Table 2:

Attribute Id Attribute
Name

Attribute
Database
Table

Data
Type

Size (in
bits)

1 A (PK) Table1 Short 16
2 B Table1 Short 16
3 C Table1 Long 32
4 D Table1 Byte 8
5 E Table1 Short 16
6 F Table1 Text 8

Table 2: Example of an Attributes Information Table

Attributes
Queries

A B C D E F
q1 15000 0 15000 15000 0 0
q2 36200 36200 36200 0 36200 0
q3 0 32000 0 0 32000 0
q4 0 34300 34300 0 34300 0

Table 3: Result Set Size-Weighted Attribute Usage Matrix

Using the attribute usage matrix we can then build a
result set size-weighted attribute matrix (Table 3) by
multiplying each row by the size of its result set. This
matrix is only an intermediate matrix towards building
the frequency weighted attribute usage matrix (Table 4).

3
Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA'06)
0-7695-2641-1/06 $20.00 © 2006

Next, we multiply each row by its corresponding query
frequency to obtain the frequency weighted attribute
usage matrix (Table 4):

Attributes
Queries

a b c d e f

q1 150000 0 150000 150000 0 0
q2 724000 724000 724000 0 724000 0
q3 0 960000 0 0 960000 0
q4 0 1372000 1372000 0 1372000 0

Table 4: Frequency Weighted Attribute Usage Matrix

The interpretation of the first row of this matrix (query
q1) is as follows: on average 150,000 tuples retrieved
from the database out of every 3,206,000 (3,206,000 =
150,000 + 724,000 + 960,000 + 1,372,000) contain
exactly the attributes a, c, and d.

3.2 Step 2: Mining the Closed Item sets
Attributes that are frequently queried together should be
stored together. If we consider database attributes as
items and queries as transactions, the problem of
identifying attributes frequently queried together is
similar to the data mining association rules problem of
finding frequent (also called large) item sets, which is
described below.

3.2.1 Frequent Item Sets (Dunham, 2003)
A frequent item set is an item set which is present in a
number of transactions greater than a support threshold, s.
For example, from Table 4, we see that {b, c} is present
in 2.096,000 (= 724,000 + 1,372,000) tuples out of every
3,206,000. Therefore the item set {b, c} has a support of
65.38% (2,096,000 / 3,206,000). The item set {a, c, d} is
present in only 150,000 out of 3,206,000 tuples retrieved,
giving it a support of 4.68%. If we set the support
threshold at 20%, {b, c} would be a frequent (or large)
item set but {a, c, d} would not be. A subset of the set of
frequent item sets is the set of frequent closed item sets
defined as follows.

3.2.2 Closed Item sets (Pasquier, 1999)
A closed itemset X is a set that meets the following two
conditions:
1) All members of X appear in the same transactions.
2) There exists no item set X’ such that:

2.1) X’ is a proper superset of X and
2.2) Every transaction containing X also contains

X’.
In other words, a closed item set is a maximal item set
contained in the same transactions.
Mathematically, the problem is described as follows
(Durand, 2002):

Let D = (O, I, R) be a data mining context, O a set of
transactions, I a set of items, and R a binary relation
between transactions and items. For O O and I I,
we define: f(O) = { i I | o O, (o,i) R } and g(I)
= { o O | i I, (o,i) R }. f(O) associates with O,
items common to all transactions o O, and g(I)
associates with I, transactions related to all items i I.
The operators h = fog and h’ = gof are the Galois closure
operators (Pasquier, 1999). Let X be an item set, X I.
X is a closed item set iff h(X) = X. In other words, a
closed item set is a maximal set of items shared by a set
of transactions. Closed item sets capture all similarities
among a set of transactions. For example, from Table 1
we get g({b, c}) = {q2, q4} and f(g({b, c}) = f({q2, q4}) =
{b, c, e}. Since f(g({b, c}) {b, c}, {b, c} is not a closed
item set. However, g({b, c, e}) = {q2, q4} and f(g({b, c,
e}) = f({q2, q4}) = {b, c, e}. Since f(g({b, c, e}) = {b, c,
e}, {b, c, e} is a closed item set.

Because {b, c, e} is a closed item set and {b, c} is not, by
definition, this means that when attributes ‘b’ and ‘c’ are
queried, attribute ‘e’ is always queried along with them.
This implies that it suffices to consider the closed item
sets as clusters of attributes and there is no need to
consider all their subsets that are frequent item sets.
Similarly to ordinary item sets, if a closed item sets has a
support greater than a predefined threshold, the closed
item set is said to be frequent. The advantage of using the
set of frequent closed item sets is that it is a subset of the
set of frequent item sets. Our first experiments have
shown that there are indeed much fewer frequent closed
item sets than there are frequent item sets. Many
algorithms for mining closed item sets exist, (Pasquier,
1999) and CHARM (Zaki, 2002).

Using the data in Table 4, the list of all items I = {a, b, c,
d, e, f} and the closed item sets (CIS) and their respective
support are:
CIS = {({a, b, c, e}, 22.6%), ({a, c}, 27.3%), ({a, c, d},
4.7%), ({b, c, e}, 65.4%), ({b, e}, 95.3%), ({c}, 70.1%)}.

3.3 Step 3 Filtering the closed item sets
Since all of our attribute in this example come from the
same table it suffices to augment, if needed, each CIS
with the primary key of the relation, i.e. attribute a.
MCIS = {{a, b, c, e}, {a, c}, {a, c, d}, {a, b, e}, {a, c}}.

3.4 Step 4: Determine the Best Clustering of
Attributes Based on Closed Item Sets
We wish to partition the database vertically by clustering
some attributes together. A clustering solution is
therefore a partition of the set of attributes I = {a, b, c, d,
e, f}. For example {{a, c, e}, {a, b, d}, {a, f}} is a
clustering solution containing 3 clusters. Each cluster

4
Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA'06)
0-7695-2641-1/06 $20.00 © 2006

containing a copy of the relation’s primary for join
purposes.

The partitioning problem is a very difficult problem and
the number of solutions is equal to the Bell number (Bell
Number Reference, 2004) that follows the following

recurrence relation: , where n is the

total number of attributes in I (n = || I ||). In our case,
however, the search space is greatly reduced since we
only consider the clustering solution that contains at least
one cluster that is a closed item set. The attributes not
present in any set in FCIS will each be clustered in its
own blocks along with a copy of the primary key.

k
n

bb
n

k
kn

0
1

3.4.1 The Vertical Partitioning Algorithm
A candidate clustering solution (CCS) is any complete
partition of the set of items I. A complete partition of the
set of items is a partition that contains every item in I. In
other words the union of all sets contained in the partition
is equal to I. For a candidate clustering solution to be
valid it must contain at least one cluster that is a modified
closed item set.

The algorithm essentially starts with an empty solution
and adds clusters of attributes that are MCIS to the
solution until the solution forms a complete partition of
the set of attributes. When the solution is complete its
cost is measured by running all the queries in Q through
the query optimizer which estimates the number of
logical reads. Note that the queries are not actually run.
All possible combinations of MCIS as clusters will be
considered.

Our preliminary test showed that the time required to
mine closed item sets is so small that there is no need to
set up frequency threshold. As a result the quality of the
solution produced is the best possible. We ran
simulations with a simpler model that did not require
primary key duplication and where the cost was an
estimated number of disk blocks accessed and found out
that our technique returned a solution 57% better than
OBP on average while running 500 faster on the TPC-R
benchmark data (TPC, 2005). We also noted that using a
simpler model, our algorithm systematically returned the
same solution as a brute force algorithm that found the
optimum solution.

4 Conclusion

We have just presented an autonomic attribute clustering
algorithm that is based on data mining techniques. The
idea is to form clusters of attributes that correspond to

closed item sets of attributes found in the queries.
Preliminary tests results indicate that this algorithm
returns an excellent quality solution in record time.

5 References

(Agrawal, 2004) Sanjay Agrawal, V. Narasayya, B. Yang,
“Integrating Vertical and Horizontal Partitioning into
Automated Physical Database Design”, SIGMOD, June 2004.
(AMS, 2003) 5th Annual International Workshop on Active
Middleware Services. June 2003.
(Bell Number Reference, 2005)
http://mathforum.org/advanced/robertd/bell.html. Accessed
10/14/2005.
(Bernstein, 1998) Phil Bernstein, M. Brodie, S. Ceri, D.
DeWitt, M. Frankiln, H. Garcia-Molina, J. Gray, J. Held, J.
Hellerstein, H. V. Jagadish, M. Lesk, D. Maier, J. Naughton, H.
Pirahesh, M. Stonebraker, and J. Ullman, "The Asilomar Report
on Database Research", ACM SIGMOD Record,,Vol. 27 ,
Issue 4 , Dec. 1998.
(Chaudhuri, 1998) Surajit Chaudhuri and V. Narasayya,
‘AutoAdmin “What-if” Index Analysis Utility”, SIGMOD
1998, Proceedings ACM SIGMOD International Conference on
Management of Data, June 1998.
(Chu, 1993) Wesley W. Chu and I. Ieong, “A Transaction-
Based Approach to Vertical Partitioning for Relational Database
Systems”, IEEE Transactions on Software Engineering, Vol. 19,
No. 8, August 1993.
(Dunham, 2003) Margaret H. Dunham, "Data Mining:
Introduction and Advanced Topics", Prentice Hall, 2003.
(Durand, 2002) Nicolas Durand and B. Cremilleux, "Extraction
of a Subset of Concepts from Frequent Closed Itemset Lattice:
A New Approach of Meaningful Clusters Discovery"
International Workshop on Advances in Formal Concept
Analysis for Knowledge Discovery in Databases, July 2002.
(Guinepain, 2006) Sylvain Guinepain and L. Gruenwald, "An
Efficient Algorithm for Automatic Attribute Clustering using
Data Mining," Technical Report, The University of Oklahoma,
School of Computer Science, May 2006.
(Hartuv, 2000) Erez Hartux, and Ron Shamir, "A Clustering
Algorithm Based on Graph Connectivity", Information
Processing Letters, Vol. 76, No. 4-6, 2000.
(McCormick, 1972) McCormick, W. T. Schweitzer P. J., and
White T. W., “Problem decomposition and data reorganization
by a clustering technique”, Oper. Res. 20, 5, September 1972.
(Navathe, 1984) Shamkant Navathe, S. Ceri, G. Wierhold, and
J. Dou, “Vertical Partitioning Algorithms for Database Design”,
ACM Transactions on Database Systems, Vol. 9, No. 4,
December 1984.
 (Pasquier, 1999) Nicolas Pasquier, Y. Bastidem, R. Taouil,
and L. Lakhal, "Efficient Mining of Association Rules Using
Closed Itemset Lattices", Information Systems, Vol. 24, No. 1,
1999.
 (SAACS, 2004) 2nd International Workshop on Self-Adaptive
and Autonomic Computing Systems. DEXA 2004.
 (TPC, 2005) www.tpc.org. Accessed 10/14/2004.
(Zaki, 2002) Mohammed J. Zaki and C. Hsiao, "CHARM: An
Efficient Algorithm for Closed Itemset Mining", SIAM
International Conference on Data Mining, April 2002.

5
Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA'06)
0-7695-2641-1/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

