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Abstract
Because of data proliferation, efficient access methods 
and data storage techniques have become increasingly 
critical to maintain an acceptable query response time. 
One way to improve query response time is to reduce the 
number of disk I/Os by partitioning the database 
vertically (attribute clustering) and/or horizontally 
(record clustering). A clustering is optimized for a given 
set of queries. However in dynamic systems the queries 
change with time, the clustering in place becomes 
obsolete, and the database needs to be re-clustered 
dynamically. In this paper we discuss an efficient 
algorithm1 for attribute clustering that dynamically and 
automatically generate attribute clusters based on closed 
item sets mined from the attributes sets found in the 
queries running against the database. 

1. Introduction 

Databases, especially data warehouses and temporal 
databases, can become quite large. The usefulness and 
usability of these databases highly depend on how 
quickly data can be retrieved. Consequently, data has to 
be organized in such a way that it can be retrieved 
efficiently. One big concern when using such databases is 
the number of I/Os required in response to a query. There 
are four common ways to reduce this cost: indexing, 
buffering, clustering and parallelism. While either 
technique can be implemented by itself, it is obvious that 
clustering is an indispensable complement to the others. 
For instance it is easy to see that a buffering would be 
inefficient if the underlying data was not clustered in 
which case the buffer manager would spend time 
swapping data pages in and out of main memory to 
satisfy the queries. The same argument can be made for 
indexing and parallelism. It is for that reason that our 
research focuses on data clustering on disk. Clustering 
can take place along two dimensions: records clustering 
and attribute clustering. In this paper our focus is on 
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attribute clustering. In attribute clustering, attributes of a 
relation are divided into groups based on their affinity.  
Clusters consist of smaller records, therefore, fewer pages 
from secondary memory are accessed to process 
transactions that retrieve or update only some attributes 
from the relation, instead of the entire record (Navathe, 
1984). This leads to better query performance.  

Another issue faced by today’s computing world is that 
the ever-growing size and number of databases to 
monitor is becoming overwhelming and human attention 
has become a precious resource (Bernstein, 1998). To 
solve this problem the computing world is relying more 
and more on automated self-managing systems capable of 
making intelligent decision on their own. The area of 
autonomic computing has been getting a lot of attention 
(Agrawal, 2004, SAACS, 2004; AMS, 2003, Chaudhuri, 
1998). Our goal in this research is to automate the 
clustering process. In this paper we describe an efficient 
algorithm for attribute clustering that automatically 
generates attribute clusters based on closed item sets 
mined from the attributes sets found in the queries 
running against the database. 

The remainder of this paper is organized as follows: in 
Section 2 we review the relevant literature in the areas of 
traditional attribute clustering, data mining clustering and 
autonomic computing. In Section 3 we describe our 
autonomic attribute clustering algorithm. Finally we give 
our conclusions in Section 4. 

2. Literature Review 

The first well-known attribute clustering technique is 
credited to (McCormick, 1972) with his Bond Energy 
Algorithm (BEA). The purpose of the BEA is to identify 
and display natural variable groups and clusters that 
occur in complex data arrays. This task is accomplished 
by permuting the rows and columns of an input data array 
in such a way as to push the numerically larger array 
elements together. Informative permutations of the input 
data array can be found via a measure of clumpiness 
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(ME) of an array, which assumes large values when 
associated with the more informative row and column 
permutations. Maximizing the ME by row and column 
permutations serves to create strong ‘bond energies’ by 
driving the larger array elements together. The main 
problem with the BEA algorithm is that when the 
resulting matrix is in block diagonal form it is hard to 
determine how many clusters there are and what 
attributes they contain. The interpretation is subjective 
and therefore requires human input and cannot be 
considered reliable. 

Navathe’s Vertical Partitioning (NVP) (Navathe, 1984) 
improves upon BEA by providing a two-phase algorithm 
to determine the vertical partitions. NVP starts by 
building an AA (attributes affinity) matrix containing all 
pairs of attributes in the database. The BEA is then used 
to rearrange the rows and columns of the AA matrix such 
that the value of the global affinity function is 
maximized. The rearranged matrix is called the clustered 
affinity (CA) matrix, which then becomes an input to the 
second phase of the technique called the Binary Vertical 
Partitioning (BVP) algorithm. BVP recursively partitions 
the CA matrix into two halves in order to minimize the 
number of transactions that access attributes in both the 
halves.  This technique has two drawbacks: 1) the 
objective function to maximize in phase 2 is subjective 
and alternative functions could produce different results., 
and 2)the solution only contains two clusters of attributes. 

In the Optimal Binary Partitioning algorithm (OBP) 
(Chu, 1993) the authors introduced a transaction-based 
vertical partitioning technique in which the attributes of a 
relation are partitioned according to a set of transactions. 
Since transactions carry more semantic meaning than 
attributes, this approach allows the optimization of the 
partition based on a selected set of important transactions. 
An optimal binary partitioning algorithm, OBP, based on 
the branch and bound method, is presented with the worst 
case complexity of O(2n) where n is the number of 
transactions. Starting from the access pattern matrix 
(attribute usage matrix), the following concepts are used 
by the OBP algorithm. A self-contained fragment Ti is 
the set of attributes that transaction i accesses. The union 
of such self-contained fragments is called a contained 
fragment. A binary cut that partitions the attributes into 
two sets in which at least one of them is a contained 
fragment is also called a reasonable cut. The OBP 
algorithm uses a branch and bound algorithm to derive all 
the reasonable cuts. A cost function is then applied to 
determine the optimal binary partitioning. OBP suffers of 
two problems: the number of possible partitions to 
examine in order to find the optimal binary partitioning 
could be high and the resulting partitioning contains only 
two clusters.  

(Hartuv, 2000) proposed a clustering technique based on 
graph connectivity that aims at partitioning gene 
expression data in the field of bio-informatics. The 
similarity data is used to form a similarity graph in which 
vertices correspond to elements and edges connect 
elements with similarity values above some threshold. In 
that graph, clusters are highly connected sub-graphs, 
defined as sub-graphs whose edge connectivity exceeds 
half of the number of vertices. The main disadvantage is 
that the query frequencies are not taken into account. Any 
two attributes queried together more often than a 
threshold are linked in the graph. This implies that the 
graph’s edges are un-weighted and all similarity links are 
considered equal. This seldom is the case in database 
applications and would result in an inaccurate solution. 

(Agrawal, 2004) is Microsoft’s solution to the automatic 
clustering problem. It relies on data mining techniques. 
Using the attribute affinity matrix, the algorithm mines 
the frequent item sets of attributes and retains the top k
ordered by confidence level. Each attribute-set forms a 
binary partition: attributes in the sets and attributes not in 
the set. The algorithm then determines which such binary 
partition is optimal for each individual query. The cost is 
obtained by creating two sub-tables corresponding to the 
two clusters and running the query through the query 
optimizer to obtain its cost. Then a merging step 
combines the resulting binary clusterings two at a time 
and evaluates the cost of all possible merged partitions. In 
the end the merged partition with the best cost is selected 
for the table. The authors clearly state that their goal is 
“to optimize performance of a database for a given 
workload”. This means that this clustering is static and, 
given its ties to other database objects such as indices, it 
is not possible to convert it into a dynamic solution.  

Any review of clustering techniques would not be 
complete without mentioning data mining clustering. 
Data mining clustering groups data items together by 
finding similarities in the data itself. To accomplish this 
data mining clustering algorithm use a similarity measure 
or distance function to determine the distance/similarity 
between any two data items (Dunham, 2003). Elements in 
the same cluster are alike and elements in different 
clusters are not alike. Data mining clustering is not a 
viable solution to solve the automatic attribute clustering 
problem because it groups data items based on 
similarities found in the actual data, not based on attribute 
usage by queries. Thus two data items could be stored 
together because they were found to be similar with 
respect to a distance function but rarely be accessed 
together.  

As we have just seen none of the attribute-clustering 
algorithm reviewed in the literature is autonomic. Some 
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require manual and subjective interpretation of the 
results; some only produce two clusters of attributes; 
others use subjective parameters that result in sub-
optimal solutions if their values are not chosen carefully. 
In the next section we describe our proposed attribute-
clustering algorithm. It is autonomic, can produce any 
number of clusters and requires no parameters. 

3. Proposed Attribute Clustering 

The attribute clustering is done in four steps, which are 
briefly described in this section.  The detailed and 
complete algorithm can be found in [Guinepain, 2006].   
In Step 1, we build a frequency-weighted attribute usage 
matrix. In Step 2, we mine the closed item sets (CIS) of 
attributes. A closed item set is a maximal item set 
contained in the same transactions. This information tells 
us what attributes have high affinity, i.e., are often 
accessed together. In Step 3, The closed item sets mined 
in Step 2 are modified in such a way that the original 
tuples can be reconstructed through a natural join after 
the partitioning has taken place. We restrict the set of CIS 
considered to a) CIS containing attributes from the same 
relation and b) CIS containing attributes from several 
relations as long as the cardinality between all the 
relations containing these attributes is 1 to 1. Every CIS 
that does not contain the primary key (PK) of the relation 
will be augmented with the primary key attributes. Note 
that if the CIS contains attributes from multiple relations 
with 1-to-1 relationships, then it suffices to augment the 
Frequent CIS (FCIS) with the primary key attribute(s) of 
the first relation if necessary. 

In Step 4, we use a branch and bound type algorithm that 
examines all clustering solutions of attributes such that a 
solution contains at least one cluster that is a modified 
closed item set (MCIS). The solution with the lowest is 
the one selected as our next vertical clustering of 
attributes. The query response time is not an accurate 
measure of the cost of a query since it varies with the 
system load, buffering, and indexing. The cost of running 
a query will therefore be given by the estimated number 
of logical reads returned by the query optimizer. 

3.1 Step 1: Build the Frequency-Weighted 
Attribute Usage Matrix 

When a query is run against the system, the following 
information concerning that query is logged: the SQL 
query, the time the query was executed, the attributes list 
associated with the query, the query result set size in 
terms of the number of tuples returned  and  the number 
of disk blocks accessed to answer the query. The set of 

queries considered by our technique will be referred to as 
Q = { qi, 1  i  p, where p is the total number of queries. 

An example of a log entry is shown here which would 
produce the first row of the affinity matrix in Table 1. 

SQL QUERY: SELECT a, c, d FROM T1 
WHERE a BETWEEN 1 AND 10 AND d=c  
ATTRIBUTES: T1.a, T1.c, T1.d 
BLOCKS ACCESSED: 4 

Using the logged information, this step derives the 
attributes usage matrix similar to the one in Table 1. The 
attribute usage matrix contains a row for each query 
considered by our technique and a column for each 
attribute in the database. If a query requests a particular 
attribute, the intersection of the query row and the 
attribute column will contain a “1”, and "0" otherwise. 
The cost of building and updating the first matrix is linear 
in terms of the number of entries in the log.  

Attributes
Queries

a b c d e f 
Record
set size 

Query 
frequency 

(%)
q1 1 0 1 1 0 0 15000 10
q2 1 1 1 0 1 0 36200 20
q3 0 1 0 0 1 0 32000 30
q4 0 1 1 0 1 0 34300 40

Table 1: Example of an Attributes Usage Matrix 

The attributes in this example are defined in Table 2: 

Attribute Id Attribute
Name 

Attribute
Database
Table 

Data
Type 

Size (in 
bits)

1 A (PK) Table1 Short 16
2 B Table1 Short 16
3 C Table1 Long 32
4 D Table1 Byte 8
5 E Table1 Short 16
6 F Table1 Text 8

Table 2: Example of an Attributes Information Table 

Attributes
Queries

A B C D E F
q1 15000 0 15000 15000 0 0
q2 36200 36200 36200 0 36200 0
q3 0 32000 0 0 32000 0
q4 0 34300 34300 0 34300 0

Table 3: Result Set Size-Weighted Attribute Usage Matrix 

Using the attribute usage matrix we can then build a 
result set size-weighted attribute matrix (Table 3) by 
multiplying each row by the size of its result set. This 
matrix is only an intermediate matrix towards building 
the frequency weighted attribute usage matrix (Table 4). 
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Next, we multiply each row by its corresponding query 
frequency to obtain the frequency weighted attribute 
usage matrix (Table 4): 

Attributes
Queries

a b c d e f 

q1 150000 0 150000 150000 0 0
q2 724000 724000 724000 0 724000 0
q3 0 960000 0 0 960000 0
q4 0 1372000 1372000 0 1372000 0

Table 4: Frequency Weighted Attribute Usage Matrix 

The interpretation of the first row of this matrix (query 
q1) is as follows: on average 150,000 tuples retrieved 
from the database out of every 3,206,000 (3,206,000 = 
150,000 + 724,000 + 960,000 + 1,372,000) contain 
exactly the attributes a, c, and d. 

3.2 Step 2: Mining the Closed Item sets 
Attributes that are frequently queried together should be 
stored together. If we consider database attributes as 
items and queries as transactions, the problem of 
identifying attributes frequently queried together is 
similar to the data mining association rules problem of 
finding frequent (also called large) item sets, which is 
described below. 

3.2.1 Frequent Item Sets (Dunham, 2003) 
A frequent item set is an item set which is present in a 
number of transactions greater than a support threshold, s. 
For example, from Table 4, we see that {b, c} is present 
in 2.096,000 ( = 724,000 + 1,372,000) tuples out of every 
3,206,000. Therefore the item set {b, c} has a support of 
65.38% (2,096,000 / 3,206,000). The item set {a, c, d} is 
present in only 150,000 out of 3,206,000 tuples retrieved, 
giving it a support of 4.68%. If we set the support 
threshold at 20%, {b, c} would be a frequent (or large) 
item set but {a, c, d} would not be. A subset of the set of 
frequent item sets is the set of frequent closed item sets 
defined as follows. 

3.2.2 Closed Item sets (Pasquier, 1999) 
A closed itemset X is a set that meets the following two 
conditions: 
1) All members of X appear in the same transactions. 
2) There exists no item set X’ such that: 

2.1) X’ is a proper superset of X and 
2.2) Every transaction containing X also contains 

X’.
In other words, a closed item set is a maximal item set 
contained in the same transactions. 
Mathematically, the problem is described as follows 
(Durand, 2002): 

Let D = (O, I, R) be a data mining context, O a set of 
transactions, I a set of items, and R a binary relation 
between transactions and items. For O  O and I  I, 
we define: f(O) = { i  I | o O, (o,i)  R } and g(I) 
= { o  O | i I, (o,i)  R }. f(O) associates with O, 
items common to all transactions o O, and g(I) 
associates with I, transactions related to all items i  I. 
The operators h = fog and h’ = gof are the Galois closure 
operators (Pasquier, 1999). Let X be an item set, X  I.
X is a closed item set iff h(X) = X. In other words, a 
closed item set is a maximal set of items shared by a set 
of transactions. Closed item sets capture all similarities 
among a set of transactions. For example, from Table 1 
we get g({b, c}) = {q2, q4} and f(g({b, c}) = f({q2, q4}) = 
{b, c, e}. Since f(g({b, c}) {b, c}, {b, c} is not a closed 
item set. However, g({b, c, e}) = {q2, q4} and f(g({b, c, 
e}) = f({q2, q4}) = {b, c, e}. Since f(g({b, c, e}) = {b, c, 
e}, {b, c, e} is a closed item set. 

Because {b, c, e} is a closed item set and {b, c} is not, by 
definition, this means that when attributes ‘b’ and ‘c’ are 
queried, attribute ‘e’ is always queried along with them. 
This implies that it suffices to consider the closed item 
sets as clusters of attributes and there is no need to 
consider all their subsets that are frequent item sets. 
Similarly to ordinary item sets, if a closed item sets has a 
support greater than a predefined threshold, the closed 
item set is said to be frequent. The advantage of using the 
set of frequent closed item sets is that it is a subset of the 
set of frequent item sets. Our first experiments have 
shown that there are indeed much fewer frequent closed 
item sets than there are frequent item sets. Many 
algorithms for mining closed item sets exist, (Pasquier, 
1999) and CHARM (Zaki, 2002).  

Using the data in Table 4, the list of all items I = {a, b, c, 
d, e, f} and the closed item sets (CIS) and their respective 
support are: 
CIS = {({a, b, c, e}, 22.6%), ({a, c}, 27.3%), ({a, c, d}, 
4.7%), ({b, c, e}, 65.4%), ({b, e}, 95.3%), ({c}, 70.1%)}. 

3.3 Step 3 Filtering the closed item sets 
Since all of our attribute in this example come from the 
same table it suffices to augment, if needed, each CIS 
with the primary key of the relation, i.e. attribute a. 
MCIS = {{a, b, c, e}, {a, c}, {a, c, d}, {a, b, e}, {a, c}}. 

3.4 Step 4: Determine the Best Clustering of 
Attributes Based on Closed Item Sets 
We wish to partition the database vertically by clustering 
some attributes together. A clustering solution is 
therefore a partition of the set of attributes I = {a, b, c, d, 
e, f}. For example {{a, c, e}, {a, b, d}, {a, f}} is a 
clustering solution containing 3 clusters. Each cluster 

4
Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA'06)
0-7695-2641-1/06 $20.00  © 2006



containing a copy of the relation’s primary for join 
purposes. 

The partitioning problem is a very difficult problem and 
the number of solutions is equal to the Bell number (Bell 
Number Reference, 2004) that follows the following 

recurrence relation: , where n is the 

total number of attributes in I (n = || I ||). In our case, 
however, the search space is greatly reduced since we 
only consider the clustering solution that contains at least 
one cluster that is a closed item set. The attributes not 
present in any set in FCIS will each be clustered in its 
own blocks along with a copy of the primary key.

k
n

bb
n

k
kn

0
1

3.4.1 The Vertical Partitioning Algorithm 
A candidate clustering solution (CCS) is any complete 
partition of the set of items I. A complete partition of the 
set of items is a partition that contains every item in I. In 
other words the union of all sets contained in the partition 
is equal to I. For a candidate clustering solution to be 
valid it must contain at least one cluster that is a modified 
closed item set. 

The algorithm essentially starts with an empty solution 
and adds clusters of attributes that are MCIS to the 
solution until the solution forms a complete partition of 
the set of attributes. When the solution is complete its 
cost is measured by running all the queries in Q through 
the query optimizer which estimates the number of 
logical reads. Note that the queries are not actually run. 
All possible combinations of MCIS as clusters will be 
considered.     

Our preliminary test showed that the time required to 
mine closed item sets is so small that there is no need to 
set up frequency threshold. As a result the quality of the 
solution produced is the best possible. We ran 
simulations with a simpler model that did not require 
primary key duplication and where the cost was an 
estimated number of disk blocks accessed and found out 
that our technique returned a solution 57% better than 
OBP on average while running 500 faster on the TPC-R 
benchmark data (TPC, 2005). We also noted that using a  
simpler model,  our algorithm systematically returned the 
same solution as a brute force algorithm that found the 
optimum solution. 

4 Conclusion 

We have just presented an autonomic attribute clustering 
algorithm that is based on data mining techniques. The 
idea is to form clusters of attributes that correspond to 

closed item sets of attributes found in the queries. 
Preliminary tests results indicate that this algorithm 
returns an excellent quality solution in record time. 
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