
An Auto-Indexing Technique for Databases Based on Clustering

Mujiba Zaman, Jyotsna Surabattula, Le Gruenwald

School of Computer Science

The University of Oklahoma

Norman, OK 73019, USA

{mujiba, jyotsna, ggruenwald}@ou.edu

Abstract

Considering the wide deployment of databases and its

size, particularly in data warehouses, it is important to

automate the physical design so that the task of the

database administrator (DBA) is minimized. An

important part of physical database design is index

selection. An auto-index selection tool capable of

analyzing large amounts of data and suggesting a good

set of indexes for a database is the goal of auto-

administration. Clustering is a data mining technique

with broad appeal and usefulness in exploratory data

analysis. This idea provides a motivation to apply

clustering techniques to obtain good indexes for a

workload in the database. In this paper we describe a

technique for auto-indexing using clustering. The

experiments conducted show that the proposed technique

performs better than Microsoft SQL Server Index

Selection Tool (IST) and can suggest indexes faster than

Microsoft’s IST.

1. Introduction

Given a relational database system and a workload of

queries that represents a sample of transactions

performed in a database, the Index Selection Problem

(ISP) involves selecting a set of index configurations for

each table so that the cost for processing the workload is

minimum subject to a limit on the total index space [2].

Since all indexes have a maintenance cost during update,

insertion and deletion, we cannot indefinitely increase

the number of indexes on a database table. The ISP has

been approached differently by different researchers to

build IST. We can categorize tools that address the ISP

based on their approach in two ways. The first category

is external tools which use linear programming

optimization techniques and other cost minimization

techniques to solve the ISP [8]. Some external tools

have also used data mining techniques to solve the ISP

[1]. The second category is the tools that utilize the

query optimizer to give cost estimates for various index

configurations and suggest a configuration with the least

cost estimation. [2], [3], [11].

A disadvantage with the first category is that the tool

is disconnected from the optimizer. This means that there

could be some indexes suggested by the tool which are

not used by the optimizer while processing the workload.

The presence of such indexes will be an overhead on the

DBMS [2], [3]. A second disadvantage is that these tools

are based on the current knowledge of the strategy used

by the optimizer and will become obsolete as the

optimizer changes [2].

The second approach has the advantage that all

indexes are chosen by the optimizer and will be used by

the optimizer while processing the workload [2], [3].

However, this approach requires many optimizer

invocations because many possible index configurations

have to be evaluated by the optimizer. This means higher

index suggestion time and longer processing time for

other applications using the DBMS when indexes are

being suggested.

The idea behind our research is to combine the two

approaches so that the major part of the solution to the

ISP is done externally and also use the optimizer to

choose the final set of indexes. In our technique the

optimizer is invoked only once for each query in the

workload to choose the final set of indexes from a set of

externally determined index configurations. Also most

of the existing external tools address only single column

and non-clustered indexes. Our tool has the ability to

suggest a set of single-column and multi-column indexes

as well as clustered and non-clustered indexes. We refer

to [4] for the definition of these terminologies.

The rest of the paper is organized as follows. In

Section 2 we describe our index selection technique. In

Section 3 we describe re-indexing. In Sections 4 and 5

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04)
1529-4188/04 $ 20.00 IEEE

we discuss our experiments and results, respectively. In

Section 6 we discuss conclusions and future work.

2. Proposed Index Selection Technique

Our proposed technique is based on the intuition that

the attributes that occur more commonly and frequently

in a group of similar queries are likely to be useful for

indexing. Based on this idea we group queries which are

similar in terms of their use of attributes. Attributes

which are accessed by all the queries in each group are

extracted as indexes. These indexes can be single-

column or multi-column indexes. For multi-column

indexes, the order of the columns is determined by

assigning weights to attributes based on whether they are

used in a search argument, join clause, GROUP

BY/ORDER BY clause or aggregate function. A

clustered index is also chosen by assigning weights to

the attributes depending on whether they occur in range

queries, join clause or GROUP BY/ORDER BY clause.

A detailed explanation is given in Section 2.1. These

indexes which are extracted are then submitted to the

query optimizer for final selection for the given

workload. The indexes not selected by the optimizer are

eliminated. The remaining indexes are the final indexes

suggested by our tool.

W o rklo ad, d atab ase
in fo rm atio n

Id en tifyin g can d id ate in d exes

C lu sterin g

C an d id ate in d ex su g g estio n
an d creatio n

Q u ery o p tim izer in d ex
elim in atio n

E
xternalto the O

p
tim

izer

Figure 1

The phases of the proposed auto-indexing technique

Figure 1 shows the various phases of our technique.

In Section 2.1 we describe the identifying candidate

indexes phase where we extract candidate indexable

attributes, identify the ordering of multi-column indexes

and identify clustered and non-clustered indexes. In

Section 2.2 we describe the clustering phase where

queries based on attributes are grouped together. In

Section 2.3 we discuss the candidate index suggestion

and creation phase, and in Section 2.4 we discuss the

query optimizer index elimination phase.

2.1 Identifying candidate indexes

During this phase a workload of queries is taken as

input, indexable attributes are extracted and a query-

attribute matrix [1] is created. While extracting

indexable attributes we also consider columns in

aggregate functions such as MIN, MAX, SUM, AVG

and COUNT as indexable attributes because non

clustered indexes can also be created on columns

existing in aggregate functions [4].

In a query-attribute matrix the presence of an

indexable attribute in a query is indicated by a 1 and

absence by a 0 [1]. An example of a query-attribute

matrix is shown in Figure 2. Let columns A and B

belong to a table named T1 having 20 rows and C, D and

E belong to a table named T2 having 15 rows in Figure

2.

Indexable attributes Queries

T1.A T1.B T2.C T2.D T2.E

Q1 1 0 1 1 0

Q2 0 1 1 0 1

Q3 1 1 1 0 1

Q4 0 1 0 0 1

Q5 1 1 1 0 1

Figure 2. Query-attribute matrix [1]

A query-frequency matrix is created during this phase

to extract candidate indexable attributes if their

frequencies (Freq) satisfy equation (1).

Freq > threshold1 OR Freq * T > threshold2 (1)

In equation (1) Freq is the frequency of each

indexable attribute in the workload and T is proportional

to the size of the table in rows to which the column

belongs. threshold1 eliminates the attributes that do not

occur very frequently in the workload and threshold2

eliminates the attributes that do not belong to large tables

unless they occur very frequently. Both the threshold

values are automatically computed by the tool and can

also be supplied by the user of the tool.

An example of a query-frequency matrix is shown in

Figure 3. In a query-frequency matrix the 0’s and 1’s of

query-attribute matrix are replaced by the frequency of

the attributes occurring in the query. Let threshold1 be 5

and threshold2 be 100 then the candidate indexable

attributes are T1.B, T2.C and T2.E in Figure 3. The

attributes A and E are removed from the query-attribute

matrix. It is worth mentioning here that the frequency of

a query in the workload is automatically taken care of by

our technique. If a query appears many times in a

workload, its corresponding attributes will occur many

times in the query frequency matrix. As a result the

chance of these attributes being picked up as candidate

indexes increases.

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04)
1529-4188/04 $ 20.00 IEEE

Queries Indexable attributes

T1.A T1.B T2.C T2.D T2.E

Q1 2 0 1 3 0

Q2 0 1 2 0 1

Q3 1 1 3 0 1

Q4 0 2 0 0 3

Q5 1 4 2 0 2

Freq 4 10 9 3 8

Freq * T 80 200 135 45 120

Figure 3. Query-frequency matrix

We order the columns based on our intuition that those

columns occurring in a WHERE clause should be given

higher priority to be chosen as an index than those

columns which occur in GROUP BY or ORDER BY

clauses and the least priority should be given to columns

occurring in aggregate functions. According to the

priorities, weights of 3, 2 and 1 are given to the columns

occurring in a WHERE clause, GROUP BY or ORDER

BY clauses and aggregate functions, respectively. The

total weight of an attribute in the workload is found and

the attributes are ordered in descending order of weight

from left to right in the query-attribute matrix. The

attributes occurring with high frequency query will have

more weight and eventually will be placed on the left.

The selection of clustered indexes is also done during

this phase. Though clustered indexes cause an overhead

they are also beneficial to certain queries. We choose to

create single-column clustered indexes in order to reduce

overhead. Since clustered indexes should be created on

columns occurring frequently in range queries we assign

more weight for range queries and the same weight for

join clause and GROUP BY or ORDER BY clauses. The

total weight of attributes in the workload is found and a

higher rank is assigned to an attribute with a higher

weight. We make the clustered indexes as selective as

possible by also considering the rank of attributes

according to selectivity. The higher the selectivity of an

index, the higher is the possibility of the index being

chosen by the optimizer to execute a query [4]. Clustered

indexes are automatically created on primary key

columns and for a primary key column selectivity is

equal to 1. Therefore columns with selectivity equal to 1

are not considered for clustered index however, they are

considered for non-clustered index. The sum of the rank

with selectivity and rank with weights is calculated. The

column with the highest sum for each table is chosen as

the clustered index for that table. If two or more columns

have the same sum then the column with a higher weight

rank is chosen. This is because attributes occurring in

range queries and having duplicate values should be

given more importance than columns with higher

selectivity.

2.2 Clustering

The output of the identifying candidate index phase is

the query attribute-matrix containing the ordered

candidate indexable attributes. This query-attribute

matrix is the input for the clustering phase. Our goal is

to group queries in a workload based on common

attributes occurring in the query using the query attribute

matrix in Figure 2. During the clustering phase queries

that are similar based on common and frequently

occurring attributes are clustered together. A possible

clustering result from Figure 2 is [Q1], [Q2, and Q4] and

[Q3, Q5].

2.3 Candidate index suggestion

During this phase, those candidate indexable

attributes which are common to all the queries clustered

together during the clustering phase are suggested as

indexes. For example from Figure 2, the suggested

index configuration will be the index [T2.C, T2.D] for

cluster [Q1], indexes [T1.B] and [T2.C] for cluster [Q3,

Q5] and index [T1.B] for cluster [Q2, Q4]. Note that

attributes T1.A and T2.E are not candidate indexable

attributes. The order in the query-attribute matrix is

maintained while creating multi-column indexes. These

suggested indexes are then presented to the optimizer for

final selection.

2.4 Query optimizer index elimination

Our idea behind this phase is the presence of an

optimizer capable of choosing from a set of virtual or

hypothetical indexes that outputs its choice and cost

estimate for each query [7]. The optimizer uses its

statistics and cost estimates to choose indexes for each

query. In the absence of an optimizer which is capable of

choosing from a virtual set of indexes in SQL Server we

actually create indexes suggested from Section 3.3. Then

we invoke the optimizer to find out the indexes estimated

to be used to execute the workload. Those indexes not

being picked up by the optimizer are dropped because

the presence of these unused indexes will cause an

overhead of space and maintenance in the database. The

remaining indexes in the database are the final indexes

suggested by our technique.

3. Re-Indexing

With a change of workload pattern and data there is a

need for automatic re-indexing because the current

indexes may no longer be good for the new workload

pattern. The DBMS can periodically monitor the cost of

total table scan for a particular size of workload. When

this value exceeds a limit the DBMS triggers the index

selection tool to capture a sample of the workload from

the transaction log to suggest new set of indexes. The

limit to trigger the tool can be determined from the

relationship between increase in table scan cost and

performance gain due to re-indexing. The existing index

set is then compared with the new index set. Indexes

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04)
1529-4188/04 $ 20.00 IEEE

which are part of new but not part of existing set are

created, those which are part of existing set and not in

new set are dropped and those which intersect remain.

The process of dropping and creating indexes in the

system follows similar methodology as Oracle’s

Automated Index-Rebuild System [12] which can be

done either online or offline.

4. Experiments

We have conducted experiments on Microsoft SQL

Server 2000 [4] using the decision support TPC-R

benchmark [9]. We have generated TPC-R’s 1 GB

database and have used 22 read-only queries from the

benchmark to create a workload of 240 query instances.

The 22 read-only benchmark queries are exponentially

distributed in the workload.

Our experiments use the k-Means [5] and KEROUAC

[6] clustering algorithms. The k-Means clustering

algorithm accepts a parameter k from the user which is

the final number of clusters for a group of observations.

It is a well-established clustering algorithm and has been

used successfully in many applications. KEROUAC is a

categorical data clustering algorithm and the final

number of clusters is automatically found in this

algorithm. KEROUAC also accepts a parameter from

the user known as the granularity factor which

determines the degree of dissimilarity among clusters.

Both these clustering algorithms have low computational

costs and are advantageous to us to reduce the index

suggestion time.

We compare the performance of our technique with

the baseline case where no indexes are created as well as

with the Frequent Itemsets Mining technique [1]. This

technique uses the Close algorithm [10] to extract

maximal set of items (attributes) that are common to a

set of transactions and their support. Those itemsets

satisfying a minimum support are suggested as indexes.

The measure for comparison that we use is the average

query response time in minutes. We also compare our

technique with Microsoft SQL Server’s IST using its

thorough tuning feature and no restrictions on workload

size and available disk space.

5. Experiment results

All our experiments are conducted on the system Intel

Pentium 4-M, CPU 2.0GHz, 512 MB RAM. The results

of the experiments conducted with k-Means and

KEROUAC are shown in Figures 4 and 5, respectively.

In Figure 4 the number of clusters k is depicted on the x-

axis, and the average query response time on the y-axis.

In Figure 5 the value of is depicted on the x-axis and

the average query response time on the y-axis. In [1] it is

reported that using the 22 read-only queries of TPC-R

benchmark, the performance improvement of the

frequent itemsets mining technique when compared with

the case of no indexes is from 15% to 25%. In Figures 4

and 5 the performance improvement of 25% for [1] is

shown with a straight line. Both the figures also show

the average query response time when no indexes are

present and when SQL Server’s recommended indexes

are present in the database.

While performing experiments we observed that the

average query response time varies with the choice of

threshold values and that the choice of the threshold

values should be such that a considerable number of

indexable attributes are eliminated but not many. We

experimented with different values for threshold1 and

threshold2. The performance is best when threshold1 is

kept close to 50% of the size of the workload. In Figures

4 and 5 threshold1 is equal to 50% of our workload size.

In our experiments the value of threshold2 was varied

for a low (20), medium (60), and high (100), and the best

performance was achieved with threshold2 equal to

medium (60). Our tool chooses threshold2 such that

indexes are considered on tables with a relatively large

number of rows (about 100,000). However, the DBA can

also set these threshold values.

Our results show that the auto-indexing tool is

sensitive to the parameters of the clustering algorithms

such as k for k-Means and for KEROUAC. The

similarity of the queries in a cluster increases with the

values of these parameters and better results are

achieved. After increasing these parameters up to a

certain value, the results do not improve further. This is

expected because at this point, the same queries are

clustered together, and increasing the value of the

parameters cannot improve the result of clustering

further. On the other hand, the lower the value of these

parameters, the lower is the similarity of queries in each

cluster, and therefore, the poorer are the results and

performance. Clearly, the choice of these parameters is

very important. Our experiments indicate that if the

value of these parameters is close to the number of

distinct queries in the workload, a good performance is

achieved. The performance of both the clustering

algorithms is the same in the best case and in the worst

case. As for the average case, the performance critically

depends on the choice of the parameter of the clustering

algorithm. Our tool automatically computes the value of

this parameter so that it works within the best

performance range.

While calculating the performance of our technique

we have considered the parameter values within the best

performance range because our tool computes the

clustering parameters and thresholds such that it can

operate in the best performance range. When compared

with the case of no indexes, the performance

improvement using k-Means clustering is 78.57% and

that using KEROUAC is 79.95%. When comparing with

the Frequent Itemsets Mining technique for index

selection in [1], the performance improvement using k-

Means is 71.43% and that using KEROUAC is 73.26%.

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04)
1529-4188/04 $ 20.00 IEEE

When compared with Microsoft IST the performance

improvement with KEROUAC is 21.5% and that with k-

means was 16.2%. For a workload of 240 queries the

index suggestion time by Microsoft IST was about 8

minutes whereas our tool suggested it in less than 2

minutes.

Number of clusters-k Vs Average query response time

0

0.5

1

1.5

2

2.5

3

3 5 8 11 14 16 18 20 22

Number of clusters-k

A
v
e
ra

g
e
 q

u
e
ry

 r
e
s
p
o
n
s
e
 t
im

e
 i
n

m
in

u
te

s

threshold2=2

0

threshold2=6

0

Microsoft IST

No Index

Frequent

Itemset

Figure 4 Results with k-Means clustering.

Granularity Factor- Vs Average query response time

0

0.5

1

1.5

2

2.5

3

3 5 8 10 12 15 20 25

Granularity factor-

A
v
e
ra

g
e
 q

u
e
ry

 r
e
s
p
o
n
s
e
 t
im

e
 i
n
 m

in
u
te

s

threshold2=20

threshold2=60

threshold2=100

Microsoft IST

No Index

Frequent Itemset

Figure 5. Results with KEROUAC clustering.

6. Conclusions and future work

Our technique is simple and requires very little

knowledge on the part of the DBA. For example, two

parameters that our tool would need are the size of the

tables in the database and threshold2. The size of the

tables can be easily retrieved from any DBMS, and the

DBA can provide the value of the thresholds within the

suggested best ranges or can accept the value which is

provided by the tool. This technique will help reduce the

functions and difficulty of a DBA of a large database to

choose a good set of indexes for a workload of queries.

Also this technique has the advantage that it can be used

with any database having an optimizer capable of

outputting its choice of indexes for a given workload. By

using clustering algorithms we are able to directly

extract single-column and multi-column indexes instead

of the iterative procedure followed by [3] which takes

longer time to suggest indexes. The Frequent itemsets

mining technique [1] does not use the optimizer and

suffers from the disadvantages of external tools. As for

the performance of the indexes, our results show that we

obtain better performance than [1] and Microsoft SQL

Server IST.

Our experiments show promising results. However,

we plan to test the dependence of our technique on

different clustering algorithms, different sizes of

workload, various threshold values, by assigning

different weights and with different frequency

distributions of the workload. So far we have used read-

only queries. We plan to further carry out our

experiments with UPDATE, INSERT and DELETE

queries in the workload. We would also like to compare

our technique with ORACLE and DB2.

7. References

[1] K. Aouiche, J. Darmont and L. Gruenwald, “Frequent

itemsets mining for database auto-administration”, Seventh

International Database Engineering and Applications

Symposium (IDEAS’03), July 16-18, 2003.

[2] S. Finkelstein, M. Schkolnick and P. Tiberio, “Physical

Database Design for Relational Databases”, ACM Transactions

on Database Systems (TODS), Volume 13, issue 1 (March

1988), Pages 91 – 128, 1988

[3] S. Chaudhari and V. Narasayya, “An efficient, Cost-Driven

Index Selection Tool for Microsoft SQL Server”, Proceedings

of the 23rd Very Large Data Base Conference, 1997.

[4] R. Rankins, P. Bertucci and P. Jenson, “Microsoft SQL

Server 2000”, SAMS Publishing, Second Edition,

UNLEASHED, Chapter 34.

[5] M. Adenberg, “Cluster Analysis for Applications”,

Academic Press, New York, New York, 1973.

[6] P. Jouve and N. Nicoloyannis, “KEROUAC: an Algorithm

for Clustering Categorical Data Sets with Practical

Advantages”

[7] S. Chaudhari and V. Narasayya,”AutoAdmin ’What-if’

Index Analysis Utility”, ACM SIGMOD Conf, 1998,, pp. 367-

378.

[8] A. Capara, M. Fischetti and D. Maio, ”Exact and

Approximate Algorithms for the Index Selection Problem in

Physical Database Design”, IEEE Transactions on Knowledge

and Data Engineering, 7(6):955-967, December 1995

[9] “TPC Benchmark R”, (Decision Support) Standard

Specification, Revision 2.1.0, Transactions Processing

Performance Council (TPC), 1993 – 2002

[10]N. Pasquier, Y.Bastide, R.Taouil, and L.Lakhal, ”Efficient

Mining of association Rules using closed itemset lattices.”

InformationSystems,24(1):25-46,1999.

[11] G. Valentin, M. Zuliani, D. Zilio and G. Lohman, “DB2

Advisor: An optimizer Smart Enough to Recommend its Own

Indexes”, Int. Conf. on Data Engineering, March 2002.

[12] Mike Hordila,“Setting up an Automated Index Rebuilding

System”.http://www.oracle.com/oramag/webcolumns/2001/aut

o_index.html.

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04)
1529-4188/04 $ 20.00 IEEE

	footer1:

