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Abstract— Query response time is the number one metrics 
when it comes to database performance. Because of data 
proliferation, efficient access methods and data storage 
techniques have become increasingly critical to maintain an 
acceptable query response time. Retrieving data from disk is 
several orders of magnitude slower than retrieving it from 
memory, it is easy to see the direct correlation between query 
response time and the number of disk I/Os. One of the common 
ways to reduce disk I/Os and therefore improve query response 
time is database clustering, which is a process that partitions the 
database vertically (attribute clustering) and/or horizontally 
(record clustering). A clustering is optimized for a given set of 
queries. However in dynamic systems the queries change with 
time, the clustering in place becomes obsolete, and the database 
needs to be re-clustered dynamically.  

This paper presents an efficient algorithm for attribute 
clustering that dynamically and automatically generates 
attribute clusters based on closed item sets mined from the 
attributes sets found in the queries running against the database. 
The paper then discusses how this algorithm can be implemented 
using the cluster computing paradigm to reduce query response 
time even further through parallelism and data redundancy. 

I. INTRODUCTION 
We live in the information age and our society’s appetite 

for knowledge and data has created the need for very large 
database support. Databases in many applications, such as 
those that process large volumes of sales transactions, medical 
records and phone calls, can be very large. The usefulness of 
these databases highly depends on how quickly data can be 
retrieved. Clever data organization is one of the best ways to 
improve retrieval speed. By improving the data storage, we 
can reduce the number of disk I/Os and thereby reduce the 
query response time.  

In this paper we combine database clustering and 
parallelism to reduce the cost of I/Os. We present our 
automatic database clustering algorithm, AutoClust, and show 
how it can benefit from a cluster computing architecture. 

Specifically, we describe the attribute clustering algorithm 
in AutoClust. In attribute clustering, attributes of a relation are 
divided into groups based on their affinity.  Clusters consist of 
smaller records, therefore, fewer pages from secondary 
memory are accessed to process transactions that retrieve or 
update only some attributes from the relation, instead of the 
entire record [14]. This leads to better query performance.  

AutoClust is an automated and dynamic clustering 
technique. It is well documented that with the ever-growing 

size and number of databases to monitor, human attention has 
become a precious resource [5]. In response to this concern, 
the computing world is relying more and more on automated 
self-managing systems capable of making intelligent decision 
on their own. The area of autonomic computing has been 
getting a lot of attention [1][17][7][18]. For Autoclust to be 
useful it should be fully automated, which implies that no 
human intervention is needed during the clustering process.  
To do this, the algorithm generates attribute clusters  
automatically based on closed item sets mined from the 
attributes sets found in the queries running against the 
database. 

Finally in today’s world, the advent of the Internet has 
made cluster computing a powerful and cost-effective way to 
share and process data.  AutoClust can take advantage of this 
computing paradigm to not only speed up its execution time 
but also produce an efficient data storage scheme where the 
query response time of the resulting database is faster than 
that of AutoClust running on a single node. 

The remainder of this paper is organized as follows.  In 
Section II we review the relevant literature in the areas of 
traditional attribute clustering, data mining clustering and 
autonomic computing. In Section III we describe our 
autonomic attribute clustering algorithm, AutoClust. In 
Section IV we discuss the adaptation of AutoClust to cluster 
computers.  Finally we give our conclusions in Section V. 

II. LITERATURE REVIEW 
Minimizing the number of disk I/Os has long been a topic 

of interest with the database community. Efforts to achieve 
reduced I/Os though data clustering can be retraced back to 
the early 1970s. The first techniques were relying solely on 
finding patterns within the data itself.  

The clustering problem is a very difficult problem and the 
number of solutions is equal to the Bell number [4] that 

follows the following recurrence relation: ⎟⎟
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where n is the total number of attributes we wish to cluster.  
The first well-known attribute clustering technique is 

credited to [13] with his Bond Energy Algorithm (BEA). The 
purpose of the BEA is to identify and display natural variable 
groups and clusters that occur in complex data arrays by 
permuting the rows and columns so as to push the numerically 
larger array elements together. The resulting matrix is in block 
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diagonal form. It is hard however to determine how many 
clusters there are and what attributes they contain. The 
interpretation is subjective and therefore requires human input 
and cannot be considered reliable. 

Navathe’s Vertical Partitioning (NVP) [14] added a second 
phase to the BEA algorithm in an effort to reduce the 
subjectivity of the final interpretation. In the phase, the author 
performs the BEA algorithm against an affinity matrix 
containing all pairs of attributes in the database. The BEA is 
then used to rearrange the rows and columns of the matrix 
such that the value of the global affinity function is 
maximized. The rearranged matrix is called the clustered 
affinity (CA) matrix, which then becomes an input to the 
second phase of the technique called the Binary Vertical 
Partitioning (BVP) algorithm. BVP recursively partitions the 
CA matrix into two halves in order to minimize the number of 
transactions that access attributes in both the halves.  This 
technique has two drawbacks: 1) the objective function to 
maximize in phase 2 is subjective and alternative functions 
could produce different results, and 2) the solution only 
contains two clusters of attributes. 

Data mining clustering is another tool to group data items 
together by finding similarities in the data itself. To 
accomplish this, data mining clustering algorithms use a 
similarity measure or distance function to determine the 
distance/similarity between any two data items [9]. The 
objective is to create groups or clusters where the elements 
within each group are alike and elements between groups are 
dissimilar. Elements in the same cluster are alike and elements 
in different clusters are not alike.  

The three techniques described so far suffer the same 
problem. These techniques group data items based on 
similarities found in the actual data, not based on attribute 
usage by queries. Thus two data items could be stored 
together because they were found to be similar but rarely be 
accessed together. The problem with such an approach is that 
it only helps with record clustering and does not help reducing 
the number of I/Os for queries accessing only few attributes of 
a relation. Realizing that the next evolution in clustering 
algorithm was transaction-based clustering. 

A transaction-based vertical partitioning technique, the 
Optimal Binary Partitioning algorithm (OBP), is proposed in 
[8] where the attributes of a relation are partitioned according 
to a set of transactions. This concept derives from the fact that 
transactions carry more semantic meaning than attributes.  
The technique creates clusters by splitting up the set of 
attributes recursively. Each cluster of attributes is separated 
into two groups with each query: the attributes that are part of 
the query and those that are not. At each sub level of the tree, 
a new query is used to split the clusters further. In the end the 
algorithm produces a tree whose leaves contain the split up 
clusters of attributes. A cost function is then applied to 
determine the optimal binary partitioning while merging 
adjacent leaves of the tree.  The disadvantages of this 
technique are that it may have to examine a large number of 
possible partitions in order to find the optimal binary 
partitioning and it produces partitions that contain only two 

clusters. Other more recent clustering algorithms can cluster 
attributes in more than 2 clusters. This allows for better 
performance when the relations have many attributes and 
there are many queries. 

A graph theory approach to the clustering problem was 
proposed in [12] with a clustering technique based on graph 
connectivity. The similarity data is used to form a similarity 
graph in which vertices correspond to elements and edges 
connect elements with similarity values above some threshold. 
Clusters are highly connected sub-graphs, which are defined 
as subgraphs whose edge connectivity exceeds half of the 
number of vertices. This technique does not take into account 
query frequencies and the resulting solution could contain 
clusters that favour infrequent queries over more frequent 
ones. 

[1], [2] is Microsoft’s data mining based solution to the 
automatic clustering problem.  Using the attribute affinity 
matrix, the algorithm mines the frequent item sets of attributes 
and retains the top k ordered by confidence level. Each 
attribute-set forms a binary partition: attributes in the sets and 
attributes not in the set. The algorithm then determines which 
such binary partition is optimal for each individual query. The 
cost is obtained by creating two sub-tables corresponding to 
the two clusters and running the query through the query 
optimizer to obtain its cost. Then a merging step combines the 
resulting binary clusters two at a time and evaluates the cost 
of all possible merged partitions. In the end the merged 
partition with the best cost is selected for the table. The 
authors clearly state that their goal is “to optimize 
performance of a database for a given workload”. This means 
that this clustering is static and, given its ties to other database 
objects such as indices, it is not possible to convert it into a 
dynamic solution.  

Using the query optimizer for automated physical design 
was also investigated in [15]. The authors introduce the Index 
Usage Model (INUM), a cost estimation technique that returns 
the same values that would have been returned by the 
optimizer, but with 3 orders of magnitude faster. This is then 
used in the context of index selection. 

A report of the last 10 years of progress in the area of self-
tuning databases can be found in [7]. Through the eyes of the 
AutoAdmin project at Microsoft, the authors review the 
progress in automated database management. 

As we have just seen none of the attribute-clustering 
algorithm reviewed in the literature is autonomic. Some 
require manual and subjective interpretation of the results; 
some only produce two clusters of attributes; others use 
subjective parameters that result in sub-optimal solutions if 
their values are not chosen carefully. In the next section we 
describe our proposed attribute-clustering algorithm. It is 
autonomic, can produce any number of clusters and requires 
no parameters. 

III. AUTOCLUST 
In this section, we present the improved version of our 

attribute clustering algorithm [11] and discuss how it can take 
advantage of the cluster computing paradigm. Note that unlike 
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our previous version of the algorithm we do not need to keep 
track of the result set size returned by each query. This is due 
to the fact that we changed our cost-model and that the cost of 
each clustering solution is now estimated by the query 
optimizer only. In addition to a better cost-model, this adds 
the advantage that no information is needed about the query 
besides its SQL formulation.  

The attribute clustering is done in four steps, which are 
described in this section. In Step 1, we build a frequency-
weighted attribute usage matrix. In Step 2, we mine the closed 
item sets (CIS) of attributes. A closed item set is a maximal 
item set contained in the same transactions. This information 
tells us what attributes have high affinity, i.e., are often 
accessed together. In Step 3, the closed item sets mined in 
Step 2 are augmented and filtered in such a way that the 
original tuples can be reconstructed through a natural join 
after the partitioning has taken place. We restrict the set of 
CIS considered to: 

• CIS containing attributes from the same relation and  
• CIS containing attributes from several relations as long 

as the cardinality between all the relations containing 
these attributes is 1 to 1.  

Every CIS that does not contain the primary key (PK) of 
the relation will be augmented with the primary key attributes. 
Note that if the CIS contains attributes from multiple relations 
with 1-to-1 relationships, then it suffices to augment the CIS 
with the primary key attribute(s) of the first relation if 
necessary. This new set is called the augmented closed item 
sets (ACIS). 

In Step 4, we use a branch and bound type algorithm that 
examines all clustering solutions of attributes such that a 
solution contains at least one cluster that is an ACIS. The 
solution with the lowest is the one selected as our next vertical 
clustering of attributes. The query response time is not an 
accurate measure of the cost of a query since it varies with the 
system load, buffering, and indexing. The cost of running a 
query will therefore be given by the estimated I/O cost 
returned by the query optimizer. 

A. Step 1: Build the Frequency-Weighted Attribute Usage 
Matrix 

AutoClust mines the closed item sets found in the queries. 
The affinity, or co-access, between attributes is stored in an 
attribute affinity matrix. For instance the following query 
would produce the first row of the affinity matrix in Table I. 

SQL QUERY: SELECT a, c, d  FROM T1  
WHERE a BETWEEN 1 AND 10 AND d=c 
The attribute usage matrix contains a row for each query 

considered by our technique and a column for each attribute in 
the database. If a query requests a particular attribute, the 
intersection of the query row and the attribute column will 
contain a “1”, and "0" otherwise. Building this matrix is trivial 
and only requires scanning each query run once. The matrix 
can be updated at will by adding and removing rows based on 
current database usage. 

 
 

TABLE I  
EXAMPLE OF AN ATTRIBUTES USAGE MATRIX 

 
Queries 

 

Attributes Query frequency (%) 

A B C D E F 

q1 1 0 1 1 0 0 10 
q2 1 1 1 0 1 0 20 
q3 0 1 0 0 1 0 30 
q4 0 1 1 0 1 0 40 

 
The attributes in this example are defined in Table II. 

TABLE II  
EXAMPLE OF AN ATTRIBUTES INFORMATION TABLE 

Attribute 
Name 

Attribute Database 
Table 

Data Type 

A (PK) Table1 Short 
B Table1 Short 
C Table1 Long 
D Table1 Byte 
E Table1 Short 
F Table1 Text 
 
Note that attribute A is denoted as the primary to the entire 

relation.  For the sake of simplicity, all attributes in this 
example belong to the same relation. However relations 
having a 1-to-1 relationship could be processed the same way. 
For example two relations R1 = (A, B, C, D) and R2 = (A, E, F), 
where there is a 1-to-1 relationship between the primary key 
attributes R1.A and R2.A, is equivalent to a single relation R = 
(A, B, C, D, E, F).   

Next, we multiply each row by of the attribute usage matrix 
by its corresponding query frequency to obtain the frequency 
weighted attribute usage matrix (Table III): 

TABLE III  
FREQUENCY WEIGHTED ATTRIBUTE USAGE MATRIX 

 
Queries 

Attributes 
A B C D E F 

q1 10 0 10 10 0 0 
q2 20 20 20 0 20 0 
q3 0 30 0 0 30 0 
q4 0 40 40 0 40 0 

 
The interpretation of this matrix is as follows. 30% 

(10%+20%) of the queries run access the attribute ‘A’, 90% 
(20% + 30% + 40%) of the queries run access the attribute ‘B’, 
and so on. Also, and more importantly for the rest of the 
technique, 10% of the queries run access attributes ‘A’, ‘C’, 
and ‘D’ (from q1). 60% of the queries run access attributes ‘B’ 
and ‘C’ (from q2 and q4). This percentage can be calculated for 
any attribute set and it will be used by our technique.  

B.  Step 2: Mining the Closed Item Sets 
Attributes that are frequently queried together should be 

stored together. If we consider database attributes as items and 
queries as transactions, the problem of identifying attributes 
frequently queried together is similar to the data mining 
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association rules problem of finding frequent (also called large) 
item sets, which is described below. 

1)  Frequent Item Sets [9]: A frequent item set is an item 
set, which is present in a number of transactions greater than a 
support threshold, s. For example, from Table IV, we see that 
{B, C} is accessed by 60% of the queries run. Therefore the 
item set {B, C} has a support of 60%. The item set {A, C, D} 
has a support of 10%. If we set the support level threshold at 
20%, {B, C} would be a frequent (or large) item set but {A, C, 
D} would not be. A subset of the set of frequent item sets is 
the set of frequent closed item sets defined as follows. 

2)  Closed Item sets [16]: A closed item set carries more 
information for it is a maximal item set contained in the same 
transactions. It meets the following two conditions: 

All members of the closed item set X appear in the same 
transactions. There exists no item set X’ such that: 

• X’ is a proper superset of X and 
• Every transaction containing X also contains X’. 

Mathematically, the problem is described as follows [10]: 
Let D = (O, I, R) be a data mining context, O a set of 

transactions, I a set of items, and R a binary relation between 
transactions and items. For O ⊆  O and I ⊆  I, we define:  

• f(O) = { i∈  I | ∈∀o O, (o,i) ∈  R } and  
• g(I) = { o∈  O | ∈∀i I, (o,i) ∈  R }.  

f(O) associates with O, items common to all transactions 
o∈ O, and g(I) associates with I, transactions related to all 
items i∈  I. The operators h = fog and h’ = gof are the Galois 
closure operators (Pasquier, 1999).  

Fig. 1. Determining a closed item set 

In Fig. 1, we see that: 
• g({B, C}) = {q2, q4} and 
• f(g({B, C}) = f({q2, q4}) = {B, C, E} 

Since g({B, C}) is not equal to f(g({B, C}), {B, C} is not a 
closed item set. 

Now we consider the item set {B, C, E}. 
• g({B, C, E}) = {q2, q4} and 
• f(g({B, C, E}) = f({q2, q4}) = {B, C, E} 

Since g({B, C, E}) is equal to f(g({B, C, E}), {B, C, E} is a 
closed item set. By definition, this means that when attributes 
‘B’ and ‘C’ are queried, attribute ‘E’ is always queried along 
with them.  

This also means that it suffices to consider the closed item 
sets as clusters of attributes and there is no need to consider all 

their subsets that are frequent item sets.  This greatly reduces 
the complexity of the clustering problem. Many algorithms for 
mining closed item sets exist. [16] and CHARM [20].  

Using the data in Table III, the list of all items I = {A, B, C, 
D, E, F} and the closed item sets (CIS) and their respective 
support are given in Table IV. 

TABLE IV  
CLOSED ITEM SETS AND THEIR SUPPORT 

Closed Item Set Support (in %) 
{A, B, C, E} 20 
{A, C} 30 
{A, C, D} 10 
{B, C, E} 60 
{B, E} 90 
{C} 70 

C. Step 3 Filtering the Closed Item Sets 
Since all attributes in this example come from the same 

table it suffices to augment, if needed, each CIS with the 
primary key of the relation, i.e. attribute ‘A’ as shown in Fig 2. 

 
Fig. 2. Augmenting the closed item sets with the primary key 
ACIS ={{A, B, C, E}, {A, C}, {A, C, D}, {A, B, E}, {A, C}}. 

D. Step 4: Determine the Best Clustering of Attributes Based 
on Closed Item Sets 

We wish to partition the database vertically by clustering 
some attributes together. A clustering solution is therefore a 
partition of the set of attributes I = {A, B, C, D, E, F}. For 
example {{A, C, E}, {A, B, D}, {A, F}} is a clustering 
solution containing 3 clusters. Each cluster contains a copy of 
the relation’s primary key for natural join purposes. 

We have seen previously in Section 2 that the clustering 
problem has been shown to be NP-HARD. In our case, 
however, the search space is greatly reduced since we only 
consider the clustering solution containing at least one cluster 
that is a closed item set. The attributes not present in any set in 
ACIS will each be clustered in its own blocks along with a 
copy of the primary key.  

A solution produced by our algorithm (leaves of the tree in 
Fig. 5) is called a candidate clustering solution (CCS) and is a 
complete partition of the set of items I. A complete partition 
of the set of items is a partition that contains every item in I. 
In other words, the union of all sets contained in the partition 
is equal to I. For a candidate clustering solution to be valid it 
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must contain at least one cluster that is a modified closed item 
set. 

The algorithm given in Fig. 3 and Fig. 4 essentially starts 
with an empty solution and adds clusters of attributes that are 
ACIS to the solution until the solution forms a complete 
partition of the set of attributes. When the solution is complete, 
as shown in the leaves of the execution tree in Figure 5, its 
cost is measured by running all the queries in Q through the 
query optimizer, which estimates the I/O cost. Note that the 
queries are not actually run. All possible combinations of 
ACIS as clusters will be considered. 
 
BEGIN MAIN 

// Inputs: 
 // I = set of all items (attributes) 
 // ACIS = Augmented Closed Item Sets. 

 // PK = the set containing all the primary keys 
// Output: 

// The vertical clustering solution with the lowest cost 
 

// Find all attributes present in any set in ACIS 
F = All attributes present in any set in ACIS 
 
// Find all attributes NOT present in any set in ACIS 
NF = I – F 
 
// Remove all the primary keys from F since all ACIS 
// are already augmented  
F = F – PK 
 
// Find all candidate clustering solutions (CCS) 
//Attributes not in any ACIS are clustered separately 
FOR all attributes attr in NF DO 
 // {{a,b},{c}} ∪ {d} = {{a,b},{c},{d}} 
 // In our example NF={F}, hence {AF} is a cluster 
 // since PK = {A} is the sole primary key. 
 CCS = CCS ∪ ( PK ∪ attr )  
END FOR 
 
// call recursively completeCandidateSolution 
completeCandidateSolution( CCS, F, ACIS, PK) 

 
END MAIN 

Fig. 3. Algorithm to determine the best clustering solution 

The algorithm in Fig. 3, using I = {A, B, C, D, E, F},  
computes F = {A, B, C, D, E}, the set of all items present in at 
least one ACIS and NF = {F} the set of all items not present 
in any ACIS. The primary key attribute is then removed from 
F leaving us with the set F = {B, C, D, E}. 

Next, we need to address the case of attributes that are not 
present in any ACIS. Since these attributes are not used in any 
queries, they should not be stored with any other attributes. 
These attributes will be stored together in a separate cluster. In 
our example attribute F is the only attribute not present in any 
ACIS and our first cluster of attribute is therefore {A, F} as 
depicted in Fig. 5. 

Next, our algorithm calls the recursive subroutine in Fig. 4. 
This subroutine will scan solutions and add an ACIS to our 
solution at each step until the solution becomes a complete 

partition of I. For instance, let us examine the rightmost 
branch of the execution tree in Fig. 5. With the current 
solution being CCS = {{A, F}}, the algorithm is not looking 
for an ACIS that contains attribute ‘B’ to add to the CCS. 
There are 3 solutions: {A, B}, {A, B, C, E}, and {A, B, E}. 
Let us focus on the latter. Since there is no overlap between 
CCS and {A, B, E} except for the primary key which is 
required, {A, B, E} is then appended to CCS. Our new CCS is 
then CCS = {{A, F}, {A, B, E}}. 

 
completeCandidateSolution( CCS, F, ACIS, PK ) 
 

// Role: 
// Incrementally builds a clustering solution of the set of 
// attributes by adding a set of ACIS or a 1-item set to the 
// current incomplete solution 

 
// Output: 

// A partition of the set of attributes, complete or not. 
 

att = first attribute in F 
 
FOR each set S in (ACIS U (att U PK)) containing att DO 

IF  ( CCS U S ) contains all the attributes in I 
              // then the solution is complete 

THEN 
     CCS = CCS U S 
     // Run every query in Q and multiply their 
     // cost (EstimateIO) by their frequency and 
     // compute the aggregate cost of the 
     // clustering. 
    // If the cost is the best save it as current best solution. 
ELSE 
    // The solution is incomplete 
    // We need to prune F and ACIS, then call recursively. 
    remove from F all elements contained in S. 
    remove from ACIS all sets containing elements in S. 
 

     completeCandidateSolution( CCS U S, F, ACIS, PK ) 
 
END IF 

 
END FOR 

 
END completeCandidateSolution( CCS, F, ACIS, PK ) 
  

Fig. 4. Algorithm (cont'd) 

Next, our algorithm will look for ACIS that contain 
attribute ‘C’ and do not contain any attributes already in CCS. 
There are two choices, {A, C} and {A, C, D}, that will create 
two sub-branches in our execution tree:  CCS_1 = {{A, F}, 
{A, B, E}, {A, C}} and CCS_2 = {{A, F}, {A, B, E}, A, C, 
D}}.  

Note that CCS_2 is a complete partition of I and, therefore, 
is highlighted in Fig. 5. CCS_1, on the other hand, is still 
incomplete and is missing attribute ‘D’. There are no ACIS 
that contain attribute 'D' and have no overlap with the 
attributes already in CCS_1. Therefore, the attribute ‘D’ is 
simply augmented with the primary key and appended to 
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CCS_1, which gives us CCS_1 = {{A, F}, {A, B, E}, {A, C}, 
{A, D}}. 

Fig. 5. Trees containing the candidate solutions 

In our example, the algorithm produces the following 5 
candidate clustering solutions, which are the leaves of the 
execution tree in Fig. 5. 

• S1 = {{A, F}, {A, B}, {A, C}, {A, D}, {A, E}} 
• S2 = {{A, F}, {A, B}, {A, C, D}, {A, E}} 
• S3 = {{A, F}, {A, B, C, E}, {A, D}} 
• S4 = {{A, F}, {A, B, E}, {A, C}, {A, D}} 
• S5 = {{A, F}, {A, B, E}, {A, C, D}} 

Each clustering solution is then implemented in our sample 
database, which consists of 1,000,000 randomly generated 
records. We then estimate the I/O costs for running each query 
using each clustering solution. Note that the queries are not 
actually executed, but only estimated by the query Optimizer 
tool of SQL Server. 

The aggregate cost in Table 5 was computed by weighing 
the cost of each query by its frequency. For instance, the 
aggregate cost of S1 is (3.857 * 10) + (5.601* 20) + (3.121 * 
30) + (5.602* 40) = 468.27 using the query frequencies given 
in Table 1. 

TABLE V 
ESTIMATED I/O COST OF CANDIDATE CLUSTERING SOLUTIONS 

Solution Estimated Individual Query Cost (I/O) Aggregate 
Cost q1 q2 q3 q4 

S1 3.857 5.601 3.121 5.601 468.27 
S2 2.658 5.779 3.121 5.779 466.95 
S3 4.403 3.026 3.026 3.026 316.38 
S4 3.857 4.406 1.926 4.406 360.79 
S5 2.657 4.584 1.926 4.584 359.47 

E. Analysing the results 
Our first observation is that clustering S3 is the best overall 

clustering solution with an aggregate cost of 316.38 for the set 
of all queries. It is also worth noting that not all queries 
perform the best using clustering S3. In fact only q2 and q4  
 

perform the best using S3. Query q1 performs the best using S2 
and S5 while q3 performs the best using S4 and S5. This is a 
strong argument in favour of dynamic clustering. It is easy to 
see that a slight change in the query frequencies would tilt the 
balance in favour of another clustering solution. 

Our tests results in [11] showed that the time required to 
mine closed item sets is so small that there is no need to set up 
frequency threshold. As a result the quality of the solution 
produced is the best possible. We ran simulations with a 
simpler model that did not require primary key duplication 
and where the cost was an estimated number of disk blocks 
accessed and found out that our technique returned a solution 
57% better than OBP on average while the execution time was 
500 times faster on the TPC-R benchmark data [19]. We also 
noted that using a simpler model, our algorithm systematically 
returned the same solution as a brute force algorithm that 
found the optimum solution. We are currently in the process 
of comparing AutoClust against Microsoft’s solution [1] 
through simulation. Preliminary results show that AutoClust 
finds a solution, which is at least as good, and it finds it faster. 
An added bonus of AutoClust is that it scales up very easily 
and adapts very advantageously to the cluster computing 
paradigm, which we will discuss in the next section. 

IV. AUTOCLUST AND CLUSTER COMPUTING 
Autoclust can be adapted to and greatly benefit from  

cluster computing where computers are linked together 
through a network and work together as a single integrated 
system to improve performance and/or availability [3].  Using 
cluster computing in the context of a database application, we 
can choose between two different architectures. The first 
architecture would simply be a distributed database where the 
data are spread across the different nodes of the network with 
no data replication. The second architecture would have the 
database replicated on each node of the network.  

A. Cluster Computing with No Replication 
In the case of a distributed database, the database would be 

split such that each node would contain entire relations of the 
database. Hence if two tables have a 1-to-1 relationship then 
they can be stored on the same node and other tables can be 
stored on other nodes with no consequence. AutoClust 
clusters database attributes on a per relation basis (as 
mentioned in Section III). This means that each node can run 
its own totally independent instance of the AutoClust 
algorithm. Since the execution is independent and totally 
parallel, the execution time is greatly improved. Moreover, 
nodes can be clustered and re-clustered separately and 
independently at the discretion of supervisor (automated or 
human).  

For example, imagine the following database relations: 
• T1 = (K1, A, B, C, D) 
• T2 = (K2, E, F) 
• T3 = (K3, G, H) 
• T4 = (K4, I, J) 
• T5 = (K5, K, L, M) 
• T6 = (K6, O, P, Q) 
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Let us assume further that there is a 1-to-1 relationship 
between the following groups of attributes:  

• K1, K2, and K3 
• K4 and K5 

It follows that the entire database can be split up in 3 nodes 
where each node would only contain tables that are linked by 
a 1-to-1 relationship. Hence, we would have 3 nodes 
containing the following data: 

• Node 1: (K1, A, B, C, D, E, F, G, H) 
• Node 2: (K4, I, J, K, L, M) 
• Node 3: (K6, O, P, Q) 

The AutoClust attribute-clustering algorithm can be run 
independently, simultaneously or asynchronously, on each 
separate node. Each node will implement the best available 
clustering for the queries considered. The best possible 
clustering is what is the best for the query set as a whole but 
certainly not for each query individually. 

The improved performance in this case is solely due to the 
parallel execution of the clustering process and queries. 

B. Cluster Computing with Replication 
In the case of a high availability clusters containing 

redundant nodes, the benefits are far greater. The trick is to 
store the same data on different nodes but in a different way. 
The version of AutoClust detailed in Section 3 identifies a 
group of possible candidate clustering solutions and test them 
against each other through the query optimizer to finally retain 
only the best one. In the case of redundant nodes we can 
cluster n nodes containing the same data using different 
clustering structures. The primary node would be clustered 
using the best possible clustering, the secondary node would 
use the second best clustering, and so on. 

The advantage of this scheme is that it implements a 
different clustering solution on each node and each query can 
be run on a different node based on expected query response 
time and/or availability. In Step III.D AutoClust determines 
exactly which clustering is the best for each query. This 
clustering is not necessarily the chosen one at the end because 
the chosen clustering in the single node version of AutoClust 
is the one that works best for the sum of all queries. The 
advantage in having redundant nodes clustered differently is 
that individual queries can be sent to the node where the 
clustering will provide them with the best query response time. 

Let us use the simulation results from Table V as an 
example. It is clear that S3 is the best clustering solution for 
the current database workload; however S3 does not provide 
the lowest estimated I/Os for all queries in the workload. 

In fact the following Table VI reflects the best possible 
choice of clustering for each query. 

Now, imagine that our cluster computing architecture 
contains three nodes. All three nodes contain the same 
database, but the database on each node is clustered 
differently. According to Table V, the best three clustering 
solutions in terms of aggregate costs are in the order of S3, S5, 
and S4. 

 
 

TABLE VI  
BEST CLUSTERING CHOICES PER QUERY 

Choices Queries 
q1 q2 q3 q4 

Best Choice S5 S3 S4 S3 
2nd Choice S2 S4 S5 S4 
3rd Choice S1 S5 S3 S5 
4th Choice S4 S1 S1 S1 
5th Choice S3 S2 S2 S2 

 

According to Table VI, the best choice for q1 is S5, the best 
choice for q2 and q4 is S3, and the best choice for q3 is S4. So 
by implementing the best three clustering solutions on the 
three nodes, we can ensure that each query has a chance to be 
run against the cluster that would provide it with the lowest 
expected estimated I/O cost. Using Tables IV and V, and 
assuming that we have 3 nodes N1, N2, and N3 that implement 
3 clustering solutions S3, S5, and S4, respectively. Then each 
query would be sent to the best possible available node 
according to the routing table in Table VII. 

TABLE VII  
QUERIES ROUTING TABLE 

Choices Queries 
q1 q2 q3 q4 

Best Choice S5 S3 S4 S3 
2nd Choice S4 S4 S5 S4 
3rd Choice S3 S5 S3 S5 

 

Using Table VII, the component in charge of executing 
queries, would redirect each query to its “Best Choice” if 
available; otherwise, the second choice would be used. 

The advantages of this architecture are many. Different 
queries can be run in parallel against different nodes. Each 
query has a chance to get rerouted towards the node that 
would execute it in the most efficient manner. 

Another side advantage of redundant nodes when it comes 
to clustering is that nodes can be clustered and re-clustered 
asynchronously, and while a node is being re-clustered, the 
data are still online from another node. This is important since 
re-clustering data involves moving data around on disk and 
this can be a time-consuming task. We could almost make the 
case that cluster computing makes database clustering 
possible. 

V. CONCLUSION 
We presented an autonomic attribute clustering algorithm 

that is based on data mining techniques. The idea is to form 
clusters of attributes that correspond to closed item sets of 
attributes found in the queries. Preliminary tests results 
indicate that this algorithm returns an excellent quality 
solution in record time. We also showed how AutoClust can 
be adapted to fit a cluster computing environment with or 
without redundant nodes. In the case of redundant nodes we 
showed that a different clustering scheme could be implement 
on each node, thereby providing an optimal query response 
time for virtually any query to run against the database. 
Redundancy also allows data availability during re-clustering. 
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