
Using Cluster Computing to Support Automatic and
Dynamic Database Clustering

Sylvain Guinepain, Le Gruenwald
School of Computer Science, The University of Oklahoma

Norman, OK 73019, USA
Sylvain.Guinepain@ou.edu

gGruenwald@ou.edu

Abstract— Query response time is the number one metrics
when it comes to database performance. Because of data
proliferation, efficient access methods and data storage
techniques have become increasingly critical to maintain an
acceptable query response time. Retrieving data from disk is
several orders of magnitude slower than retrieving it from
memory, it is easy to see the direct correlation between query
response time and the number of disk I/Os. One of the common
ways to reduce disk I/Os and therefore improve query response
time is database clustering, which is a process that partitions the
database vertically (attribute clustering) and/or horizontally
(record clustering). A clustering is optimized for a given set of
queries. However in dynamic systems the queries change with
time, the clustering in place becomes obsolete, and the database
needs to be re-clustered dynamically.

This paper presents an efficient algorithm for attribute
clustering that dynamically and automatically generates
attribute clusters based on closed item sets mined from the
attributes sets found in the queries running against the database.
The paper then discusses how this algorithm can be implemented
using the cluster computing paradigm to reduce query response
time even further through parallelism and data redundancy.

I. INTRODUCTION
We live in the information age and our society’s appetite

for knowledge and data has created the need for very large
database support. Databases in many applications, such as
those that process large volumes of sales transactions, medical
records and phone calls, can be very large. The usefulness of
these databases highly depends on how quickly data can be
retrieved. Clever data organization is one of the best ways to
improve retrieval speed. By improving the data storage, we
can reduce the number of disk I/Os and thereby reduce the
query response time.

In this paper we combine database clustering and
parallelism to reduce the cost of I/Os. We present our
automatic database clustering algorithm, AutoClust, and show
how it can benefit from a cluster computing architecture.

Specifically, we describe the attribute clustering algorithm
in AutoClust. In attribute clustering, attributes of a relation are
divided into groups based on their affinity. Clusters consist of
smaller records, therefore, fewer pages from secondary
memory are accessed to process transactions that retrieve or
update only some attributes from the relation, instead of the
entire record [14]. This leads to better query performance.

AutoClust is an automated and dynamic clustering
technique. It is well documented that with the ever-growing

size and number of databases to monitor, human attention has
become a precious resource [5]. In response to this concern,
the computing world is relying more and more on automated
self-managing systems capable of making intelligent decision
on their own. The area of autonomic computing has been
getting a lot of attention [1][17][7][18]. For Autoclust to be
useful it should be fully automated, which implies that no
human intervention is needed during the clustering process.
To do this, the algorithm generates attribute clusters
automatically based on closed item sets mined from the
attributes sets found in the queries running against the
database.

Finally in today’s world, the advent of the Internet has
made cluster computing a powerful and cost-effective way to
share and process data. AutoClust can take advantage of this
computing paradigm to not only speed up its execution time
but also produce an efficient data storage scheme where the
query response time of the resulting database is faster than
that of AutoClust running on a single node.

The remainder of this paper is organized as follows. In
Section II we review the relevant literature in the areas of
traditional attribute clustering, data mining clustering and
autonomic computing. In Section III we describe our
autonomic attribute clustering algorithm, AutoClust. In
Section IV we discuss the adaptation of AutoClust to cluster
computers. Finally we give our conclusions in Section V.

II. LITERATURE REVIEW
Minimizing the number of disk I/Os has long been a topic

of interest with the database community. Efforts to achieve
reduced I/Os though data clustering can be retraced back to
the early 1970s. The first techniques were relying solely on
finding patterns within the data itself.

The clustering problem is a very difficult problem and the
number of solutions is equal to the Bell number [4] that

follows the following recurrence relation: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∑

=
+ k

n
bb

n

k
kn

0
1 ,

where n is the total number of attributes we wish to cluster.
The first well-known attribute clustering technique is

credited to [13] with his Bond Energy Algorithm (BEA). The
purpose of the BEA is to identify and display natural variable
groups and clusters that occur in complex data arrays by
permuting the rows and columns so as to push the numerically
larger array elements together. The resulting matrix is in block

978-1-4244-2640-9/08/$25.00 © 2008 IEEE

Invited Talk

Automatic Performance Tuning (iWAPT 2008)
Third international Workshop on

394

diagonal form. It is hard however to determine how many
clusters there are and what attributes they contain. The
interpretation is subjective and therefore requires human input
and cannot be considered reliable.

Navathe’s Vertical Partitioning (NVP) [14] added a second
phase to the BEA algorithm in an effort to reduce the
subjectivity of the final interpretation. In the phase, the author
performs the BEA algorithm against an affinity matrix
containing all pairs of attributes in the database. The BEA is
then used to rearrange the rows and columns of the matrix
such that the value of the global affinity function is
maximized. The rearranged matrix is called the clustered
affinity (CA) matrix, which then becomes an input to the
second phase of the technique called the Binary Vertical
Partitioning (BVP) algorithm. BVP recursively partitions the
CA matrix into two halves in order to minimize the number of
transactions that access attributes in both the halves. This
technique has two drawbacks: 1) the objective function to
maximize in phase 2 is subjective and alternative functions
could produce different results, and 2) the solution only
contains two clusters of attributes.

Data mining clustering is another tool to group data items
together by finding similarities in the data itself. To
accomplish this, data mining clustering algorithms use a
similarity measure or distance function to determine the
distance/similarity between any two data items [9]. The
objective is to create groups or clusters where the elements
within each group are alike and elements between groups are
dissimilar. Elements in the same cluster are alike and elements
in different clusters are not alike.

The three techniques described so far suffer the same
problem. These techniques group data items based on
similarities found in the actual data, not based on attribute
usage by queries. Thus two data items could be stored
together because they were found to be similar but rarely be
accessed together. The problem with such an approach is that
it only helps with record clustering and does not help reducing
the number of I/Os for queries accessing only few attributes of
a relation. Realizing that the next evolution in clustering
algorithm was transaction-based clustering.

A transaction-based vertical partitioning technique, the
Optimal Binary Partitioning algorithm (OBP), is proposed in
[8] where the attributes of a relation are partitioned according
to a set of transactions. This concept derives from the fact that
transactions carry more semantic meaning than attributes.
The technique creates clusters by splitting up the set of
attributes recursively. Each cluster of attributes is separated
into two groups with each query: the attributes that are part of
the query and those that are not. At each sub level of the tree,
a new query is used to split the clusters further. In the end the
algorithm produces a tree whose leaves contain the split up
clusters of attributes. A cost function is then applied to
determine the optimal binary partitioning while merging
adjacent leaves of the tree. The disadvantages of this
technique are that it may have to examine a large number of
possible partitions in order to find the optimal binary
partitioning and it produces partitions that contain only two

clusters. Other more recent clustering algorithms can cluster
attributes in more than 2 clusters. This allows for better
performance when the relations have many attributes and
there are many queries.

A graph theory approach to the clustering problem was
proposed in [12] with a clustering technique based on graph
connectivity. The similarity data is used to form a similarity
graph in which vertices correspond to elements and edges
connect elements with similarity values above some threshold.
Clusters are highly connected sub-graphs, which are defined
as subgraphs whose edge connectivity exceeds half of the
number of vertices. This technique does not take into account
query frequencies and the resulting solution could contain
clusters that favour infrequent queries over more frequent
ones.

[1], [2] is Microsoft’s data mining based solution to the
automatic clustering problem. Using the attribute affinity
matrix, the algorithm mines the frequent item sets of attributes
and retains the top k ordered by confidence level. Each
attribute-set forms a binary partition: attributes in the sets and
attributes not in the set. The algorithm then determines which
such binary partition is optimal for each individual query. The
cost is obtained by creating two sub-tables corresponding to
the two clusters and running the query through the query
optimizer to obtain its cost. Then a merging step combines the
resulting binary clusters two at a time and evaluates the cost
of all possible merged partitions. In the end the merged
partition with the best cost is selected for the table. The
authors clearly state that their goal is “to optimize
performance of a database for a given workload”. This means
that this clustering is static and, given its ties to other database
objects such as indices, it is not possible to convert it into a
dynamic solution.

Using the query optimizer for automated physical design
was also investigated in [15]. The authors introduce the Index
Usage Model (INUM), a cost estimation technique that returns
the same values that would have been returned by the
optimizer, but with 3 orders of magnitude faster. This is then
used in the context of index selection.

A report of the last 10 years of progress in the area of self-
tuning databases can be found in [7]. Through the eyes of the
AutoAdmin project at Microsoft, the authors review the
progress in automated database management.

As we have just seen none of the attribute-clustering
algorithm reviewed in the literature is autonomic. Some
require manual and subjective interpretation of the results;
some only produce two clusters of attributes; others use
subjective parameters that result in sub-optimal solutions if
their values are not chosen carefully. In the next section we
describe our proposed attribute-clustering algorithm. It is
autonomic, can produce any number of clusters and requires
no parameters.

III. AUTOCLUST
In this section, we present the improved version of our

attribute clustering algorithm [11] and discuss how it can take
advantage of the cluster computing paradigm. Note that unlike

395

our previous version of the algorithm we do not need to keep
track of the result set size returned by each query. This is due
to the fact that we changed our cost-model and that the cost of
each clustering solution is now estimated by the query
optimizer only. In addition to a better cost-model, this adds
the advantage that no information is needed about the query
besides its SQL formulation.

The attribute clustering is done in four steps, which are
described in this section. In Step 1, we build a frequency-
weighted attribute usage matrix. In Step 2, we mine the closed
item sets (CIS) of attributes. A closed item set is a maximal
item set contained in the same transactions. This information
tells us what attributes have high affinity, i.e., are often
accessed together. In Step 3, the closed item sets mined in
Step 2 are augmented and filtered in such a way that the
original tuples can be reconstructed through a natural join
after the partitioning has taken place. We restrict the set of
CIS considered to:

• CIS containing attributes from the same relation and
• CIS containing attributes from several relations as long

as the cardinality between all the relations containing
these attributes is 1 to 1.

Every CIS that does not contain the primary key (PK) of
the relation will be augmented with the primary key attributes.
Note that if the CIS contains attributes from multiple relations
with 1-to-1 relationships, then it suffices to augment the CIS
with the primary key attribute(s) of the first relation if
necessary. This new set is called the augmented closed item
sets (ACIS).

In Step 4, we use a branch and bound type algorithm that
examines all clustering solutions of attributes such that a
solution contains at least one cluster that is an ACIS. The
solution with the lowest is the one selected as our next vertical
clustering of attributes. The query response time is not an
accurate measure of the cost of a query since it varies with the
system load, buffering, and indexing. The cost of running a
query will therefore be given by the estimated I/O cost
returned by the query optimizer.

A. Step 1: Build the Frequency-Weighted Attribute Usage
Matrix

AutoClust mines the closed item sets found in the queries.
The affinity, or co-access, between attributes is stored in an
attribute affinity matrix. For instance the following query
would produce the first row of the affinity matrix in Table I.

SQL QUERY: SELECT a, c, d FROM T1
WHERE a BETWEEN 1 AND 10 AND d=c
The attribute usage matrix contains a row for each query

considered by our technique and a column for each attribute in
the database. If a query requests a particular attribute, the
intersection of the query row and the attribute column will
contain a “1”, and "0" otherwise. Building this matrix is trivial
and only requires scanning each query run once. The matrix
can be updated at will by adding and removing rows based on
current database usage.

TABLE I
EXAMPLE OF AN ATTRIBUTES USAGE MATRIX

Queries

Attributes Query frequency (%)

A B C D E F

q1 1 0 1 1 0 0 10
q2 1 1 1 0 1 0 20
q3 0 1 0 0 1 0 30
q4 0 1 1 0 1 0 40

The attributes in this example are defined in Table II.

TABLE II
EXAMPLE OF AN ATTRIBUTES INFORMATION TABLE

Attribute
Name

Attribute Database
Table

Data Type

A (PK) Table1 Short
B Table1 Short
C Table1 Long
D Table1 Byte
E Table1 Short
F Table1 Text

Note that attribute A is denoted as the primary to the entire

relation. For the sake of simplicity, all attributes in this
example belong to the same relation. However relations
having a 1-to-1 relationship could be processed the same way.
For example two relations R1 = (A, B, C, D) and R2 = (A, E, F),
where there is a 1-to-1 relationship between the primary key
attributes R1.A and R2.A, is equivalent to a single relation R =
(A, B, C, D, E, F).

Next, we multiply each row by of the attribute usage matrix
by its corresponding query frequency to obtain the frequency
weighted attribute usage matrix (Table III):

TABLE III
FREQUENCY WEIGHTED ATTRIBUTE USAGE MATRIX

Queries

Attributes
A B C D E F

q1 10 0 10 10 0 0
q2 20 20 20 0 20 0
q3 0 30 0 0 30 0
q4 0 40 40 0 40 0

The interpretation of this matrix is as follows. 30%

(10%+20%) of the queries run access the attribute ‘A’, 90%
(20% + 30% + 40%) of the queries run access the attribute ‘B’,
and so on. Also, and more importantly for the rest of the
technique, 10% of the queries run access attributes ‘A’, ‘C’,
and ‘D’ (from q1). 60% of the queries run access attributes ‘B’
and ‘C’ (from q2 and q4). This percentage can be calculated for
any attribute set and it will be used by our technique.

B. Step 2: Mining the Closed Item Sets
Attributes that are frequently queried together should be

stored together. If we consider database attributes as items and
queries as transactions, the problem of identifying attributes
frequently queried together is similar to the data mining

396

association rules problem of finding frequent (also called large)
item sets, which is described below.

1) Frequent Item Sets [9]: A frequent item set is an item
set, which is present in a number of transactions greater than a
support threshold, s. For example, from Table IV, we see that
{B, C} is accessed by 60% of the queries run. Therefore the
item set {B, C} has a support of 60%. The item set {A, C, D}
has a support of 10%. If we set the support level threshold at
20%, {B, C} would be a frequent (or large) item set but {A, C,
D} would not be. A subset of the set of frequent item sets is
the set of frequent closed item sets defined as follows.

2) Closed Item sets [16]: A closed item set carries more
information for it is a maximal item set contained in the same
transactions. It meets the following two conditions:

All members of the closed item set X appear in the same
transactions. There exists no item set X’ such that:

• X’ is a proper superset of X and
• Every transaction containing X also contains X’.

Mathematically, the problem is described as follows [10]:
Let D = (O, I, R) be a data mining context, O a set of

transactions, I a set of items, and R a binary relation between
transactions and items. For O ⊆ O and I ⊆ I, we define:

• f(O) = { i∈ I | ∈∀o O, (o,i) ∈ R } and
• g(I) = { o∈ O | ∈∀i I, (o,i) ∈ R }.

f(O) associates with O, items common to all transactions
o∈ O, and g(I) associates with I, transactions related to all
items i∈ I. The operators h = fog and h’ = gof are the Galois
closure operators (Pasquier, 1999).

Fig. 1. Determining a closed item set

In Fig. 1, we see that:
• g({B, C}) = {q2, q4} and
• f(g({B, C}) = f({q2, q4}) = {B, C, E}

Since g({B, C}) is not equal to f(g({B, C}), {B, C} is not a
closed item set.

Now we consider the item set {B, C, E}.
• g({B, C, E}) = {q2, q4} and
• f(g({B, C, E}) = f({q2, q4}) = {B, C, E}

Since g({B, C, E}) is equal to f(g({B, C, E}), {B, C, E} is a
closed item set. By definition, this means that when attributes
‘B’ and ‘C’ are queried, attribute ‘E’ is always queried along
with them.

This also means that it suffices to consider the closed item
sets as clusters of attributes and there is no need to consider all

their subsets that are frequent item sets. This greatly reduces
the complexity of the clustering problem. Many algorithms for
mining closed item sets exist. [16] and CHARM [20].

Using the data in Table III, the list of all items I = {A, B, C,
D, E, F} and the closed item sets (CIS) and their respective
support are given in Table IV.

TABLE IV
CLOSED ITEM SETS AND THEIR SUPPORT

Closed Item Set Support (in %)
{A, B, C, E} 20
{A, C} 30
{A, C, D} 10
{B, C, E} 60
{B, E} 90
{C} 70

C. Step 3 Filtering the Closed Item Sets
Since all attributes in this example come from the same

table it suffices to augment, if needed, each CIS with the
primary key of the relation, i.e. attribute ‘A’ as shown in Fig 2.

Fig. 2. Augmenting the closed item sets with the primary key
ACIS ={{A, B, C, E}, {A, C}, {A, C, D}, {A, B, E}, {A, C}}.

D. Step 4: Determine the Best Clustering of Attributes Based
on Closed Item Sets

We wish to partition the database vertically by clustering
some attributes together. A clustering solution is therefore a
partition of the set of attributes I = {A, B, C, D, E, F}. For
example {{A, C, E}, {A, B, D}, {A, F}} is a clustering
solution containing 3 clusters. Each cluster contains a copy of
the relation’s primary key for natural join purposes.

We have seen previously in Section 2 that the clustering
problem has been shown to be NP-HARD. In our case,
however, the search space is greatly reduced since we only
consider the clustering solution containing at least one cluster
that is a closed item set. The attributes not present in any set in
ACIS will each be clustered in its own blocks along with a
copy of the primary key.

A solution produced by our algorithm (leaves of the tree in
Fig. 5) is called a candidate clustering solution (CCS) and is a
complete partition of the set of items I. A complete partition
of the set of items is a partition that contains every item in I.
In other words, the union of all sets contained in the partition
is equal to I. For a candidate clustering solution to be valid it

397

must contain at least one cluster that is a modified closed item
set.

The algorithm given in Fig. 3 and Fig. 4 essentially starts
with an empty solution and adds clusters of attributes that are
ACIS to the solution until the solution forms a complete
partition of the set of attributes. When the solution is complete,
as shown in the leaves of the execution tree in Figure 5, its
cost is measured by running all the queries in Q through the
query optimizer, which estimates the I/O cost. Note that the
queries are not actually run. All possible combinations of
ACIS as clusters will be considered.

BEGIN MAIN

// Inputs:
 // I = set of all items (attributes)
 // ACIS = Augmented Closed Item Sets.

 // PK = the set containing all the primary keys
// Output:

// The vertical clustering solution with the lowest cost

// Find all attributes present in any set in ACIS
F = All attributes present in any set in ACIS

// Find all attributes NOT present in any set in ACIS
NF = I – F

// Remove all the primary keys from F since all ACIS
// are already augmented
F = F – PK

// Find all candidate clustering solutions (CCS)
//Attributes not in any ACIS are clustered separately
FOR all attributes attr in NF DO
 // {{a,b},{c}} ∪ {d} = {{a,b},{c},{d}}
 // In our example NF={F}, hence {AF} is a cluster
 // since PK = {A} is the sole primary key.
 CCS = CCS ∪ (PK ∪ attr)
END FOR

// call recursively completeCandidateSolution
completeCandidateSolution(CCS, F, ACIS, PK)

END MAIN

Fig. 3. Algorithm to determine the best clustering solution

The algorithm in Fig. 3, using I = {A, B, C, D, E, F},
computes F = {A, B, C, D, E}, the set of all items present in at
least one ACIS and NF = {F} the set of all items not present
in any ACIS. The primary key attribute is then removed from
F leaving us with the set F = {B, C, D, E}.

Next, we need to address the case of attributes that are not
present in any ACIS. Since these attributes are not used in any
queries, they should not be stored with any other attributes.
These attributes will be stored together in a separate cluster. In
our example attribute F is the only attribute not present in any
ACIS and our first cluster of attribute is therefore {A, F} as
depicted in Fig. 5.

Next, our algorithm calls the recursive subroutine in Fig. 4.
This subroutine will scan solutions and add an ACIS to our
solution at each step until the solution becomes a complete

partition of I. For instance, let us examine the rightmost
branch of the execution tree in Fig. 5. With the current
solution being CCS = {{A, F}}, the algorithm is not looking
for an ACIS that contains attribute ‘B’ to add to the CCS.
There are 3 solutions: {A, B}, {A, B, C, E}, and {A, B, E}.
Let us focus on the latter. Since there is no overlap between
CCS and {A, B, E} except for the primary key which is
required, {A, B, E} is then appended to CCS. Our new CCS is
then CCS = {{A, F}, {A, B, E}}.

completeCandidateSolution(CCS, F, ACIS, PK)

// Role:
// Incrementally builds a clustering solution of the set of
// attributes by adding a set of ACIS or a 1-item set to the
// current incomplete solution

// Output:

// A partition of the set of attributes, complete or not.

att = first attribute in F

FOR each set S in (ACIS U (att U PK)) containing att DO

IF (CCS U S) contains all the attributes in I
 // then the solution is complete

THEN
 CCS = CCS U S
 // Run every query in Q and multiply their
 // cost (EstimateIO) by their frequency and
 // compute the aggregate cost of the
 // clustering.
 // If the cost is the best save it as current best solution.
ELSE
 // The solution is incomplete
 // We need to prune F and ACIS, then call recursively.
 remove from F all elements contained in S.
 remove from ACIS all sets containing elements in S.

 completeCandidateSolution(CCS U S, F, ACIS, PK)

END IF

END FOR

END completeCandidateSolution(CCS, F, ACIS, PK)

Fig. 4. Algorithm (cont'd)

Next, our algorithm will look for ACIS that contain
attribute ‘C’ and do not contain any attributes already in CCS.
There are two choices, {A, C} and {A, C, D}, that will create
two sub-branches in our execution tree: CCS_1 = {{A, F},
{A, B, E}, {A, C}} and CCS_2 = {{A, F}, {A, B, E}, A, C,
D}}.

Note that CCS_2 is a complete partition of I and, therefore,
is highlighted in Fig. 5. CCS_1, on the other hand, is still
incomplete and is missing attribute ‘D’. There are no ACIS
that contain attribute 'D' and have no overlap with the
attributes already in CCS_1. Therefore, the attribute ‘D’ is
simply augmented with the primary key and appended to

398

CCS_1, which gives us CCS_1 = {{A, F}, {A, B, E}, {A, C},
{A, D}}.

Fig. 5. Trees containing the candidate solutions

In our example, the algorithm produces the following 5
candidate clustering solutions, which are the leaves of the
execution tree in Fig. 5.

• S1 = {{A, F}, {A, B}, {A, C}, {A, D}, {A, E}}
• S2 = {{A, F}, {A, B}, {A, C, D}, {A, E}}
• S3 = {{A, F}, {A, B, C, E}, {A, D}}
• S4 = {{A, F}, {A, B, E}, {A, C}, {A, D}}
• S5 = {{A, F}, {A, B, E}, {A, C, D}}

Each clustering solution is then implemented in our sample
database, which consists of 1,000,000 randomly generated
records. We then estimate the I/O costs for running each query
using each clustering solution. Note that the queries are not
actually executed, but only estimated by the query Optimizer
tool of SQL Server.

The aggregate cost in Table 5 was computed by weighing
the cost of each query by its frequency. For instance, the
aggregate cost of S1 is (3.857 * 10) + (5.601* 20) + (3.121 *
30) + (5.602* 40) = 468.27 using the query frequencies given
in Table 1.

TABLE V
ESTIMATED I/O COST OF CANDIDATE CLUSTERING SOLUTIONS

Solution Estimated Individual Query Cost (I/O) Aggregate
Cost q1 q2 q3 q4

S1 3.857 5.601 3.121 5.601 468.27
S2 2.658 5.779 3.121 5.779 466.95
S3 4.403 3.026 3.026 3.026 316.38
S4 3.857 4.406 1.926 4.406 360.79
S5 2.657 4.584 1.926 4.584 359.47

E. Analysing the results
Our first observation is that clustering S3 is the best overall

clustering solution with an aggregate cost of 316.38 for the set
of all queries. It is also worth noting that not all queries
perform the best using clustering S3. In fact only q2 and q4

perform the best using S3. Query q1 performs the best using S2
and S5 while q3 performs the best using S4 and S5. This is a
strong argument in favour of dynamic clustering. It is easy to
see that a slight change in the query frequencies would tilt the
balance in favour of another clustering solution.

Our tests results in [11] showed that the time required to
mine closed item sets is so small that there is no need to set up
frequency threshold. As a result the quality of the solution
produced is the best possible. We ran simulations with a
simpler model that did not require primary key duplication
and where the cost was an estimated number of disk blocks
accessed and found out that our technique returned a solution
57% better than OBP on average while the execution time was
500 times faster on the TPC-R benchmark data [19]. We also
noted that using a simpler model, our algorithm systematically
returned the same solution as a brute force algorithm that
found the optimum solution. We are currently in the process
of comparing AutoClust against Microsoft’s solution [1]
through simulation. Preliminary results show that AutoClust
finds a solution, which is at least as good, and it finds it faster.
An added bonus of AutoClust is that it scales up very easily
and adapts very advantageously to the cluster computing
paradigm, which we will discuss in the next section.

IV. AUTOCLUST AND CLUSTER COMPUTING
Autoclust can be adapted to and greatly benefit from

cluster computing where computers are linked together
through a network and work together as a single integrated
system to improve performance and/or availability [3]. Using
cluster computing in the context of a database application, we
can choose between two different architectures. The first
architecture would simply be a distributed database where the
data are spread across the different nodes of the network with
no data replication. The second architecture would have the
database replicated on each node of the network.

A. Cluster Computing with No Replication
In the case of a distributed database, the database would be

split such that each node would contain entire relations of the
database. Hence if two tables have a 1-to-1 relationship then
they can be stored on the same node and other tables can be
stored on other nodes with no consequence. AutoClust
clusters database attributes on a per relation basis (as
mentioned in Section III). This means that each node can run
its own totally independent instance of the AutoClust
algorithm. Since the execution is independent and totally
parallel, the execution time is greatly improved. Moreover,
nodes can be clustered and re-clustered separately and
independently at the discretion of supervisor (automated or
human).

For example, imagine the following database relations:
• T1 = (K1, A, B, C, D)
• T2 = (K2, E, F)
• T3 = (K3, G, H)
• T4 = (K4, I, J)
• T5 = (K5, K, L, M)
• T6 = (K6, O, P, Q)

399

Let us assume further that there is a 1-to-1 relationship
between the following groups of attributes:

• K1, K2, and K3
• K4 and K5

It follows that the entire database can be split up in 3 nodes
where each node would only contain tables that are linked by
a 1-to-1 relationship. Hence, we would have 3 nodes
containing the following data:

• Node 1: (K1, A, B, C, D, E, F, G, H)
• Node 2: (K4, I, J, K, L, M)
• Node 3: (K6, O, P, Q)

The AutoClust attribute-clustering algorithm can be run
independently, simultaneously or asynchronously, on each
separate node. Each node will implement the best available
clustering for the queries considered. The best possible
clustering is what is the best for the query set as a whole but
certainly not for each query individually.

The improved performance in this case is solely due to the
parallel execution of the clustering process and queries.

B. Cluster Computing with Replication
In the case of a high availability clusters containing

redundant nodes, the benefits are far greater. The trick is to
store the same data on different nodes but in a different way.
The version of AutoClust detailed in Section 3 identifies a
group of possible candidate clustering solutions and test them
against each other through the query optimizer to finally retain
only the best one. In the case of redundant nodes we can
cluster n nodes containing the same data using different
clustering structures. The primary node would be clustered
using the best possible clustering, the secondary node would
use the second best clustering, and so on.

The advantage of this scheme is that it implements a
different clustering solution on each node and each query can
be run on a different node based on expected query response
time and/or availability. In Step III.D AutoClust determines
exactly which clustering is the best for each query. This
clustering is not necessarily the chosen one at the end because
the chosen clustering in the single node version of AutoClust
is the one that works best for the sum of all queries. The
advantage in having redundant nodes clustered differently is
that individual queries can be sent to the node where the
clustering will provide them with the best query response time.

Let us use the simulation results from Table V as an
example. It is clear that S3 is the best clustering solution for
the current database workload; however S3 does not provide
the lowest estimated I/Os for all queries in the workload.

In fact the following Table VI reflects the best possible
choice of clustering for each query.

Now, imagine that our cluster computing architecture
contains three nodes. All three nodes contain the same
database, but the database on each node is clustered
differently. According to Table V, the best three clustering
solutions in terms of aggregate costs are in the order of S3, S5,
and S4.

TABLE VI
BEST CLUSTERING CHOICES PER QUERY

Choices Queries
q1 q2 q3 q4

Best Choice S5 S3 S4 S3
2nd Choice S2 S4 S5 S4
3rd Choice S1 S5 S3 S5
4th Choice S4 S1 S1 S1
5th Choice S3 S2 S2 S2

According to Table VI, the best choice for q1 is S5, the best
choice for q2 and q4 is S3, and the best choice for q3 is S4. So
by implementing the best three clustering solutions on the
three nodes, we can ensure that each query has a chance to be
run against the cluster that would provide it with the lowest
expected estimated I/O cost. Using Tables IV and V, and
assuming that we have 3 nodes N1, N2, and N3 that implement
3 clustering solutions S3, S5, and S4, respectively. Then each
query would be sent to the best possible available node
according to the routing table in Table VII.

TABLE VII
QUERIES ROUTING TABLE

Choices Queries
q1 q2 q3 q4

Best Choice S5 S3 S4 S3
2nd Choice S4 S4 S5 S4
3rd Choice S3 S5 S3 S5

Using Table VII, the component in charge of executing
queries, would redirect each query to its “Best Choice” if
available; otherwise, the second choice would be used.

The advantages of this architecture are many. Different
queries can be run in parallel against different nodes. Each
query has a chance to get rerouted towards the node that
would execute it in the most efficient manner.

Another side advantage of redundant nodes when it comes
to clustering is that nodes can be clustered and re-clustered
asynchronously, and while a node is being re-clustered, the
data are still online from another node. This is important since
re-clustering data involves moving data around on disk and
this can be a time-consuming task. We could almost make the
case that cluster computing makes database clustering
possible.

V. CONCLUSION
We presented an autonomic attribute clustering algorithm

that is based on data mining techniques. The idea is to form
clusters of attributes that correspond to closed item sets of
attributes found in the queries. Preliminary tests results
indicate that this algorithm returns an excellent quality
solution in record time. We also showed how AutoClust can
be adapted to fit a cluster computing environment with or
without redundant nodes. In the case of redundant nodes we
showed that a different clustering scheme could be implement
on each node, thereby providing an optimal query response
time for virtually any query to run against the database.
Redundancy also allows data availability during re-clustering.

400

ACKNOWLEDGMENT
The Authors would like to thank Ludovic Landry and Serge

Tchitembo for implementing the AutoClust algorithm and
providing us with some of the simulation results used in this
paper.

REFERENCES
[1] Sanjay Agrawal, V. Narasayya, B. Yang, Integrating Vertical and

Horizontal Partitioning into Automated Physical Database Design,
SIGMOD, June 2004.

[2] Sanjay Agrawal, Surajit Chaudhuri, Lubor Kollar, Arun Marathe,
Vivek Narasayya, Manoj Syamala, Database Tuning Advisor for
Microsoft SQL Server 2005: Demo, SIGMOD 2005, June 2005.

[3] Mark Baker, Rajkumar Buyya, Cluster Computing at a Glance,
Chapter 1, High-Performance Cluster Computing, Architectures and
Systems, Vol. 1, Prentice-Hall, 1999.

[4] http://mathforum.org/advanced/robertd/bell.html. Accessed 8/15/2008.
[5] Phil Bernstein, M. Brodie, S. Ceri, D. DeWitt, M. Frankiln, H. Garcia-

Molina, J. Gray, J. Held, J. Hellerstein, H. V. Jagadish, M. Lesk, D.
Maier, J. Naughton, H. Pirahesh, M. Stonebraker, and J. Ullman, The
Asilomar Report on Database Research, ACM SIGMOD Record,,Vol.
27 , Issue 4 , Dec. 1998.

[6] Surajit Chaudhuri and V. Narasayya, AutoAdmin What-if” Index
Analysis Utility, SIGMOD 1998, Proceedings ACM SIGMOD
International Conference on Management of Data, June 1998.

[7] Surajit Chaudhuri and Vivek Narasayya, Self-Tuning Database Systems:
A Decade of Progress, VLDB 2007, Proceedings of the 33rd
International Conference Very Large Databases, September 2007.

[8] Wesley W. Chu and I. Ieong, A Transaction-Based Approach to
Vertical Partitioning for Relational Database Systems, IEEE
Transactions on Software Engineering, Vol. 19, No. 8, August 1993.

[9] Margaret H. Dunham, Data Mining: Introduction and Advanced Topics,
Prentice Hall, 2003.

[10] Nicolas Durand and B. Cremilleux, Extraction of a Subset of Concepts
from Frequent Closed Itemset Lattice: A New Approach of Meaningful
Clusters Discovery, International Workshop on Advances in Formal
Concept Analysis for Knowledge Discovery in Databases, July 2002.

[11] Sylvain Guinepain and L. Gruenwald, Automatic Database Clustering
Using Data Mining, DEXA '06: Proceedings of the 17th International
Conference on Database and Expert Systems Applications, September
2006.

[12] Erez Hartux, and Ron Shamir, A Clustering Algorithm Based on Graph
Connectivity, Information Processing Letters, Vol. 76, No. 4-6, 2000.

[13] McCormick, W. T. Schweitzer P. J., and White T. W., Problem
decomposition and data reorganization by a clustering technique, Oper.
Res. 20, 5, September 1972.

[14] Shamkant Navathe, S. Ceri, G. Wierhold, and J. Dou, Vertical
Partitioning Algorithms for Database Design, ACM Transactions on
Database Systems, Vol. 9, No. 4, December 1984.

[15] Stratos Papadomanolakis, Debabrata Dash, Anastasia Ailamaki,
Efficient Use of the Query Optimizer for Automated Physical Design,
VLDB 2007, Proceedings of the 33rd International Conference Very
Large Databases, September 2007.

[16] Nicolas Pasquier, Y. Bastidem, R. Taouil, and L. Lakhal, Efficient
Mining of Association Rules Using Closed Itemset Lattices,
Information Systems, Vol. 24, No. 1, 1999.

[17] 2nd International Workshop on Self-Adaptive and Autonomic
Computing Systems. DEXA 2004.

[18] 3rd International Workshop on Self-Managing Database Systems, ICDE
2008.

[19] http://www.tpc.org.
[20] Mohammed J. Zaki and C. Hsiao, CHARM: An Efficient Algorithm for

Closed Itemset Mining, SIAM International Conference on Data
Mining, April 2002.

401

