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8.1 Introduction

Signal flow graph theory is concerned with the development of a graph theoretic approach to solving
a system of linear algebraic equations. Two closely related methods proposed by Coates [1] and
Mason [2, 3] have appeared in the literature and have served as elegant aids in gaining insight into
the structure and nature of solutions of systems of equations. In this chapter we develop these two
methods. Our development follows closely [4].

An extensive discussion of signal flow theory may be found in [5]. Applications of signal flow
theory in the analysis and synthesis electrical networks may be found in Sections 4 and 5. Coates’
and Mason’s methods may be viewed as generalizations of a basic theorem in graph theory due
to Harary [6], which provides a formula for finding the determinant of the adjacency matrix of
a directed graph. Thus, our discussion begins with the development of this theorem. For graph
theoretic terminology the reader may refer to Chapter 7.

8.2 Adjacency Matrix of a Directed Graph

. . Consider adirected graph G = (V, E) with no parallel edges. Let V = {v1, ..., v,}. The adjacency
‘matrix M = [m; i1 of G is an n x n matrix defined as follows:

S 1, if (vi,v;) € E
710, otherwise

The graph shown in Fig. 8.1 has the following adjacency matrix:

vl Uy U3 U4

|1 110

M= v{0100
: U3 1 0 01
|1 1 11

In the following we shall develop a topological formula for det M. Toward this end we introduce
some basic terminology. A 1-factor of a directed graph G is a spanning subgraph of G in which the
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8.1 Thegraph G.

in-degree and the out-degree of every vertex are both equal to 1. It is easy to see that a 1-factor is
a collection of vertex-disjoint directed circuits. Because a self-loop at a vertex contributes 1 to the
in-degree and 1 to the out-degree of the vertex, a 1-factor may have some self-loops. As an example,
the three 1-factors of the graph of Fig. 8.1 are shown in Fig. 8.2.

A permutation (ji, j2, ..., ju) of integers 1,2, ..., n is even (odd) if an even (odd) number of
interchanges are required to rearrange it as (1, 2, . .., n). The notation

( L,2,....n

JLj2seeesdn )

is also used to represent the permutation (ji, j2, ..., ja). Asan example, the permutation (4, 3, 1, 2)
is odd because it can be rearranged as (1, 2, 3, 4) using the following sequence of interchanges:

1. Interchange 2 and 4.
2. Interchange 1 and 2.
3. Interchange 2 and 3.

For a permutation (j) = (ji, ja, ..., Jn)s €ji.jg.njn» is defined as equal to 1, if (§) is an even
permutation; otherwise, £;, j, .. j,, is equal to —1. .
Given an n x n square matrix X = [x;;], we note that det X is given by

det X = Zejl-fz,ja,---,jn X1j1s X2jp * * " Xnj,
€)]
where the summation Z( ) is overall permutations of 1, 2, ..., n [7].
The following theorem is due to Harary [6].

THEOREM 8.1 Let H;, i = 1,2 ..., p be the 1-factors of an n-vertex directed graph G. Let L;
denote the number of directed circuits in H;, and let M denote the adjacency matrix of G. Then

P y
: 14

detM = (=1 )\~

i=l
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8.2 The three 1-factors of the graph of Fig. 8.1.

PROOFS8.1 From the definition of a determinant, we have

detM =Y &) jp..ju MijyMap " Myj, (8.1)
G s

Proof will follow if we establish the following:

1. Each nonzero term m j, - maj, - - - myj, corresponds to a 1-factor of G, and conversely,
each 1-factor of G corresponds to a non-zero term myj, - my jp * " Mg,

2. &5, Joedn = (—.1)"+L if the 1-factor corresponding to a nonzero my j, - maj, - - - mpy;, has
L directed circuits.
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Anonzerotermmyjmyj, - - - my;j, corresponds to the set of edges (vy, vj1), (2, vj2) - - - (Vn, Vjin).
Each vertex appears exactly twice in this set, once as an initial vertex and once as a terminal vertex
of a pair of edges. Therefore, in the subgraph induced by these edges, for each vertex its in-degree
and its out-degree are both equal to 1, and this subgraph is a 1-factor of G. In other words, each
non-zero term in the sum in (8.1) corresponds to a 1-factor of G. The fact that each 1-factor of G
corresponds to a non-zero term my j, - myj, - - - myj, is obvious.

As regards &;, j, .. ;.. consider a directed circuit C in the 1-factor corresponding to my;,
maj, - - - Myj,. Without loss of generality, assume that C consists of the w edges

(vlr 1)2), (v2s v3)’ ) (ullh vl)

Itis easy to see that the corresponding permutation (2, 3, ..., w, 1) canberearrangedas (1, 2, ... ., w)
using w — 1 interchanges. If the 1-factor has L directed circuits with lengths wy, ..., wr, the
permutation (jy, ..., j,) can be rearranged as (1, 2, ..., n) using

i =1+ g — 1)+ 4wy D) =n—L

interchanges. So, _
— n+L
Ejtjain = (=1)

(]

As an example, for the 1-factors (shown in Fig. 8.2) of the graph of Fig. 8.1, the corresponding
L;are L} =3, Ly = 3, and L3 = 2. So, the determinant of the adjacency matrix of the graph of
Fig. 8.11s

(-t [(—1)3 + (=13 + (—1)2] =—1

Consider next a weighted directed graph G in which each edge (v;, v;) as associated with a weight
w;j. Then we may define the adjacency matrix M = [m; ] of G as follows:

S wi; if(v,-,vj)eE
Y71 o, otherwise

Given a subgraph H of G, let us define weight w(H) of H asthe product of the weights of all edges
in H. If H has no edges, then we define w(H) = 1. The following result is an easy generalization
of Theorem 8.1. ‘

THEOREM 8.2  The determinant of the adjacency’matrix of an n-vertex directed graph G is given
by

det M = (~1)" Y (-DiHw(m),
H

where H is a 1-factor, w(H) is the ﬁ{eight of H, and Ly is the number of directed circuitsin H.

8.3 Coates’ Gain Fpnﬂuléf

Consider a linear system describéd by the'equation

-

AX = Bxyy : (8.2)
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where A is a nonsingular # x n matrix, X is a column vector of unknown variables x 1,X2, .., Xn, B
is a column vector of elements by, by, ..., b, and x| is the input variable. It is well known that

Xe iy biBik

Xn+1 detd

(8.3)

where A;y is the (i, k) cofactor of A.

To develop Coates’ topological formulas for the numerator-and the denominator of (8.3), let us
first augment the matrix A by adding — B to the right of A and adding a row of zeroes at the bottom of
the resulting matrix. Let this matrix be denoted by A’. The Coates flow graph! G.(A"), or simply
the Coates graph associated with matrix A’, is a weighted directed graph whose adjacency matrix is
the transpose of the matrix A’. Thus, G.(A’) has n + 1 vertices x, X2, .. ., Xp41, and if aj; - - - # 0,
then G.(A’) has an edge directed from x; to x; with weight aj;. Clearly, the Coates graph G.(A)
associated with matrix A can be obtained from G.(A’) by removing the vertex xp1.

As an example, for the following system of equations

3 -2 1 x| 3
-1 2 0 x | = 1 | x4 (8.4)
3 =2 2 X3 -2
the matrix A’ is

3 =21 -3
;-1 20 -1
A= 3 =2 2 2
0 0 0 0

The Coates graphs G.(A’) and G.(A) are shown in Fig. 8.3.

Because a matrix and its transpose have the same determinant value and because A is the transpose
of the adjacency matrix of G.(A’), we obtain the following result from Theorem 8.2.

THEOREM 8.3  If a matrix A is nonsingular, then

detA = (=1)" Z(—l)"" w(H) (8.5)
- ,

Where H is a I-factor of Go(A), w(H) is the weight of H and Ly is the number of directed circuits
in H.

To derive a similar expression for the sum in the numerator of (8.3), we first define the concept of a
1-factorial connection. A 1-factorial connection H;; from x; to xj in G (A) is a spanning subgraph
of G which contains a directed path P from x; to x; and a set of vertex-disjoint directed circuits
which include all the vertices of G.(A) other than those which lie on P. Similarly, a 1-factorial
connection of G.(A) can be defined. As an example, a 1-factorial connection from x4 to x3 of the
graph G.(A") of Fig. 8.3(a) is shown in Fig. 8.3(c).

1n network and systems theory literature, the Coates graph is referred to as a flow graph.
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8.3  (a) The Coates graph G(A’); (b) the graph G(A); (c) A-factorial connection Hy 3 of the graph G.(A”)
THEOREM 8.4 Let G.(A) be the Coates graph associated with an n x n matrix A. Then

1. A,‘.,- | = ("%)"—IZ(—I)L”w(H)

: H
2 8y = GO D ey ik
= o
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where H is a 1-factor in the graph obtained by removing vertex x; from G (A), H;; j is a 1-factorial
connectionin G¢(A) from vertex x; to vertex x j, and Ly and L H) are the numbers of directed circuits
in H and H;j, respectively.

PROOF 8.2 1. Note that A;; is the determinant of the matrix obtained from A by removing its
row i and column i. Also, the Coates graph of the resulting matrix can be obtained from G.(A) by
removing vertex x;. Proof follows from these observations and Theorem 8.3,

2. Let Ay denote the matrix obtained from A by replacing its jth column by a column of zeroes,
except for the element in row i, which is 1. Then it is easy to see that

Ajj = det Ay

Now, the Coates graph G.(A) can be obtained from G.(A) by removing all edges incident out of
vertex x; and adding an edge directed from x; to x; with weight 1. Then from Theorem 8.3, we get

Ay; det Ay

1" (=Diew(Hy) (8.6)

Hy

where H,, is a 1-factor of G.(Ay) and Ly is the number of directed circuits in H,.

Consider now a 1-factor H, in G.(A,). Let C be the directed circuit of Hy containing x;. Because
in G¢(Aq), (xj, x;) is.the only edge incident out of x ; j» it follows that x; also lies in C. If we remove
the edge (x;, x;) from H, we get a 1-factorial connection, H;; j. Furthermore, L’H = Ly — 1 and
w(H;;) = w(Hy) because (x;, x;) has weight equal to 1. Thus, each H, corresponds to a 1-factorial
connection H;j of G:(Ay) with w(H,) = w(H;;) and L = Ly — 1. The converse of this is also
easy to see. Thus, in (8.6) we can replace H, by H;; and La by (L + 1). Then we obtain

Ajj = (=113 (= DErw(H;)

H;j

O

Having shown that each A;; can be expressed in terms of the weights of the 1-factorial connections
H;jin G.(A), we now show that )" b; A;; can be expressed in terms of the weights of the 1-factorial
connections Hy41, ¢ in G.(A").

First, note that adding the edge (x,41, x;) to Hj; results in a 1-factorial connection Hp 1, g, with
W(Hp11,k) = —b; w(Hix). Also, Hyy1, has the same number of directed circuits as H;,. Con-
versely, from each H,; | ; that contains the edge (x,+1, x;) we can construct a 1-factorial connection
Hjy satisfying w(Hp+1,£) = —b; w(Hjx). Also, Hyy|, i and the corresponding Hj will have the
same number of directed circuits. Thus, a one-to-one correspondence exists between the set of all
1-factorial connections Hy4.1, % in G.(A’) and the set of all 1-factorial connections in G.(A) of the
form Hjy such thateach Hy 1, ¢ and the corresponding H;x have the same number of directed circuits
and satisfy the relation w(H,1 ) = —b; w(H;t). Combining this result with Theorem 8.4, we get

Zb, k= (-D" Z( D H w(Hpp1, k) (8.7)
Hpp1,k

where the summation is over all 1-factorial connections, H, t1,k in G¢(A”), and L is the number
of directed circuits in Hy.1, ;. From (8.5) and (8.7) we get the following theorem.
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THEOREM 8.5  If the coefficient matrix A is nonsingular, then the solution of (8.2) is given by

% oy D w(Hpp)
Xn+1 >p(=Dirw(H)
fork=1,2,...,n, where Hyy1 « is a 1-factorial connection of G:(A') from vertex xp4 to vertex

xx, H is a 1-factor of G.(A), and L’H and Ly are the numbers of directed circuits in H, 1% and
H, respectively.

(8.8)

Equation (8.8) is the called Coates’ gain formula. We now illustrate Coates’ method by solving
the system (8.4) for x3/x4. First, we determine the 1-factors of the Coates’ graph G.(A) shown in
Fig. 8.3(b). These 1-factors, along with their weights, are listed below. The vertices enclosed within
parentheses represent a directed circuit. -

1-Factor H-  Weightw(H) Ly

() (x2)(x3) 12 3
(x2)(x]. x3) 6 2
(x3)(x1. x2) 4 2
(x1, x2, x3) 2 1

From the above we get the denominator in (8.8) as

Y DM wH) = (1P 124 (1?64 (=1)2 4+ (-2 = 4
H :

To compute the numerator in (8.8) we need to determine the 1-factorial connections Hy 7 in the
Coates graph G.(A") shown in Fig. 8.3(a). They are listed below along with their weights. The
vertices in a directed path from x4 to x; are given within parentheses.

1-Factorial connection

Hyy w(Hyy) Ly
(X4, x1, %2)(x3) 6 1
(xq, x2) (x)(x3) -6 o2
(x4, x2)(x1, x3) -3 1
(x4, X3, X1, X3) -2 0

From the above we get the numerator in (8.8) as

Y =DFrw(H ) = (D' 6+ (=1DA(~6) + (=D (=3) + (-1)°(~=2) = —11

Hyz i
Thus, we get
X2 11
x 4
8.4 Mason’s Gain Formula
Consider again the system of qquatfqns

AX = Bxp4

We can rewrite the above as *

heo
xj = (ajj + Dxj + Zaijk Tbjxns1, J=12,...,m, Xntl = Xntl (8.9)

k=1 .
kA
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Letting X’ denote the column vector of the variables x|, x2, . . . Xp+1, and Uy, denote the unit matrix
of order n, we can write (8.9) in matrix form as follows: . :

\
A +U )X =X - (8.10)

where A’ is the matrix defined earlier in Section 8.3. f

The Coates graph G (A’ 4 Up+1) is called the Mason’s s1gnal flow graph or simply the Mason
graph? associated with A’, and it is denoted by G, (4’). The Mason graph G, (A) is defined in a
similar manner. The Mason graphs G, (4’) and G, (A) associa}ted with the system (8.4) are shown
in Fig. 8.4. Mason’s graph elegantly represents the flow of variables in a system. If we associate each
vertex with a variable and if an edge is directed from x; to x;, then we may consider the variable x;
as contributing (a;;x;) to the variable x ;. Thus, x; is equal to the sum of the products of the weights
of the edges incident into vertex xj and the variables corresponding to the vertices from which these
edges emanate.

®)
8.4 (a) The Mason graph G, (A"); (b) the Mason graph G, (A).

Note that to obtain the Coates graph G.(A) from the Mason graph G, (A) we simply subtract one
from the weight of each self-loop. Equivalently, we may add at each vertex of the Mason graph a
self-loop of weight —1. Let S denote the set of all such loops of weight —1 added to construct the
Coates graph G from the Mason graph G, (A).

2In network and systems theory literature Mason graphs are usually referred to as signal flow graphs.
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Consider now the Coates graph G constructed as above and a 1-factor H in G having j self-loops
from the set S. If H has a total of Lo + j directed circuits, then removing the j self-loops from H

will result in a subgraph Q of G, (A) which is a collection of Lg vertex disjoint directed circuits.
Also,

w(H) = (=1) w(Q)
Then, from Theorem 8.3 we get

detA = (~1)"Z(—1)L0+jw(H)

(- 1)"2( nlew(Q) @11)

-1" [1 + Z( l)LQw(Q)]
We can rewrite the above as:

detA=(—l)"[1—ZQJ'1+ZQ_,'2—-ZQJ-3...] (8.12)
J J i

where each term in ; Qji s the weight of a collection of i vertex-disjoint directed circuits in
G (A).

Suppose we refer to (—1)" det A as the determinant of the graph G,,(A). Then, starting from
Hp 41, and reasoning exactly as above we can express the numerator of (8.3) as

Zb,A,k—( 1% Zw( LA (8.13)

where P/ w1, k is a directed path from x,, ] to x; of Gm (A) and A is the determinant of the subgraph

of G, (A”) which is vertex-disjoint from the path P, +1 - From(8.12) and (8.13) we get the following
theorem.

THEOREM 8.6  If the coefficient matrix A is (8.2) is nonsingular, then

o Xj w(Pl ) DA,
Xn+1 A ’

k=1,2,...,n (8.14)

where Pn 1k is the jth directed path from xy, .| to xy of G, (A"), A j is the determinant of the sub-

graph of G, (A") which is vertex-dz.s']oznt from the jthdirected path P, +1 o and A is the determinant
of the graph G, (A).

Equation (8.14) is known as Mason’s galn formula. In network and systems theory P’ w1, k is
referred to as a forward path frOm vertex X1 to vertex x¢. The directed circuits of G, (A') are
called the feedback loops. '

We now illustrate Mason’s method by solving the system (8.4) for x3/x4. To compute the de-
nominator in (8.14) we determine the different collections of vertex-disjoint directed circuits of the
Mason graph G, (A) shown in Fig. 8.4(b). They are listed below along with their weights.
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Collection of Vertex-Disjoint
Directed Circuits of G, (4)  Weight No. of Directed Circuits

1) 04 [
(x3) 03 1
(x3) 03 1
(x1,x2) 02 1
(x1,x3) 03 1] H
(x1, x2, x3) 02 1
(xp)(x2) ) 12 - 2
(x1)(x3) 12 2
(x2)(x3) 09 2
(x2)(x1, x3) 09 2
(x3)(x1, x2) 06 2
(x1)(x2)(x3) 36 3
From the above we obtain the denominator in (8.14)
A = 1+(-D'4+3+3+2+3+2]

+(=D12+ 124+ 9+ 9+ 6]+ (—1)336 = —4

255

To compute the numerator in (8.14) we need the forward paths in G,,(A’) from x4 to x». They are

listed below with their weights.

j P, Weight
1 (x4.x2) -1
2 (x3,x1,x2) 3
3 (x4.x3.x1,x2) -2

The directed circuits which are vertex-disjoint from P41‘2 are (xl.), (x3), (x1, x3). Thus
Al=1-@+3+3)+12=1-10+12=3,
(x3) is the only directed circuit which is vertex-disjoint from P42’2. So,
Ay=1-3=-2,
No directed circuit is vertex-disjoint from P43' 2580 A3 = 1. Thus, the numerator in (8.14) is
PioAL+ PlyAg+ PisAs = —3-6-2=—11

and
X2 11

X4 4
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