
XUE ET AL., TO APPEAR IN IEEE JSAC-OCN 1

An Improved Algorithm for Optimal Lightpath
Establishment on a Tree Topology

Guoliang Xue, Senior Member, IEEE, Weiyi Zhang, Jian Tang, and Krishnaiyan Thulasiraman, Fellow, IEEE

Abstract— Routing and wavelength assignment (RWA) aims to
assign the limited number of wavelengths in a wavelength-division
multiplexed (WDM) optical network so as to achieve greater
capacity. In a recent paper [6], Datta et al. studied the problem
of establishing a set of disjoint lightpaths on a tree topology
using a single wavelength to maximize the total traffic supported
by the chosen set of lightpaths. They discussed applications of
this problem to RWA and presented a dynamic programming
algorithm which optimally solves this problem in O(n4 + nD

3)
time, where n is the number of nodes in the network and D is the
maximum node degree. In this paper, we present an improved
algorithm with a time complexity of O(n2 + nD

2).
Keywords: WDM networks, wavelength assignment, maximum
matching, graph algorithms.

1. INTRODUCTION

All-optical networks transmit information on a very high
speed, broadband optical path [2], [10], [17]. One promising
all-optical wide-area network architecture is the wavelength-
division multiplexed (WDM) network with circuit-switching
and wavelength routing [15], [16].

In WDM networks, the fiber bandwidth is partitioned into
many wavelength channels, each of which can be utilized to
carry independent data connections. Reference [2] introduced
the concept of a lightpath, which is an all-optical connection
that is wavelength-routed from source node to destination
node; i.e., there is no electronic processing at intermediate
nodes of the path. In the absence of all-optical wavelength
conversion, the same wavelength must be used to carry the
traffic on each link of the lightpath. In one-hop (also called
single-hop) routing schemes, connections between nodes are
established using a single lightpath (one-hop refers to a single
virtual hop, not a single physical hop). Due to the wavelength
continuity constraint, one-hop connections are often difficult
to establish. Alternatively, multi-hop connections can be es-
tablished, where the end-to-end connection is comprised of
multiple lightpaths, and a different wavelength may be used for
each of the lightpaths. Multi-hop connections, however, require
electronic processing at some of the intermediate nodes, which
potentially adds to the cost of the network. The focus of this
paper is an efficient algorithm for one-hop routing, without
wavelength conversion, on a tree topology. This algorithm

Guoliang Xue, Weiyi Zhang and Jian Tang are all with the Department
of Computer Science and Engineering at Arizona State University, Tempe,
AZ 85287-8809. Email: {xue, weiyi.zhang, jian.tang}@asu.edu. Their
research was supported in part by NSF grants ANI-0312635 and CCF-
0431167.

Krishnaiyan Thulasiraman is Professor and Hitachi Chair in the School of
Computer Science at the University of Oklahoma, Norman, OK 73019. Email:
thulasi@ou.edu. The research of this author was supported in part by NSF
grant ANI-0312435.

can be used as a foundation for more general routing and
wavelength assignment, as was shown in [6], where the goal
is to carry most of the traffic using one-hop connections while
being efficient in the number of wavelengths utilized.

Given communication or lightpath requests, finding routes
for the lightpath requests and assigning wavelengths to each of
the links on the lightpaths satisfying certain performance crite-
ria is known as the routing and wavelength assignment (RWA)
problem. The RWA problem is known to be NP-hard [8] for
general network topologies [2]. In view of the importance of
this problem, many approaches have been proposed in the
literature. We refer the readers to [1], [11], [12], [14], [18],
[19], [20], [21] and the references therein for a detailed review
of works in this area. These works have considered both
one-hop and multi-hop networks and have used relaxations
of integer linear programming formulations and sophisticated
approximation techniques for multicommodity flow problems.

In a recent paper [6], Datta et al. studied the problem (to
be called the OLET problem) of establishing a set of disjoint
lightpaths on a tree topology using a single wavelength to
maximize the total one-hop traffic demand that is supported by
the chosen set of lightpaths. The authors presented a dynamic
programming algorithm (called optimal tree algorithm) which
optimally solves this problem in O(n4 + nD3) time, where n
is the number of nodes in the network and D is the maximum
node degree. They then presented a heuristic algorithm for
the RWA problem on a general graph, using the optimal tree
algorithm as a subroutine. Specifically, the heuristic loops
over the wavelengths of the network. For each wavelength,
the wavelength plane is decomposed into many link-disjoint
trees. The optimal tree algorithm is applied to the trees in non-
decreasing size of the trees, establishing lightpaths to support
one-hop traffic demands that have not yet been supported.
They used simulation results to illustrate the advantages of
this new heuristic algorithm over an existing heuristic algo-
rithm [20] for the RWA problem.

In this paper, we study the OLET problem and present an
O(n2+nD2) time algorithm, thereby improving the algorithm
of [6] by a factor of n. Our improved algorithm is achieved by
carefully reusing computed partial information, both in terms
of reducing the time required for computing various book-
keeping information and in terms of solving a set of closely
related maximum matching problems in asymptotically faster
time than solving them independently, making use of the result
of Cunningham and Marsh [5].

We wish to point out that Garg et al. also presented a
method to solve a set of closely related maximum matching
problems in asymptotically faster time than solving them

2 XUE ET AL., TO APPEAR IN IEEE JSAC-OCN

independently [9], within the context of finding maximum
integral flow on a tree network with unit edge capacities. It
is interesting to note that finding maximum integral flow on a
tree network with unit edge capacities is equivalent to a special
case of the OLET problem which is studied in [6] and the
current paper, where the traffic demand takes binary values,
rather than arbitrary nonnegative integer values. Related work
can also be found in [3], [4], where Costa et al. generalized
the result of [9] to the case where the edge capacities can be
arbitrary positive integers, but under the restriction that the tree
can be oriented into a rooted tree such that for each source-
destination pair, there is a directed path from the source to the
destination in this rooted tree. This problem is different from
the OLET problem that we are studying.

The rest of this paper is organized as follows. In Section 2,
we present notations and definitions. In Section 3, we present
an O(n2 + nD3) time algorithm. In Section 4, we discuss
how to solve |V | + 1 related maximum matching problems
in O(|V |3) time, which results in an O(n2 + nD2) time
implementation of the algorithm presented in Section 3. We
conclude the paper in Section 5.

2. DEFINITIONS AND NOTATIONS

We will use T to denote a tree network with n nodes and
n−1 edges. For two nodes u and v in T , we will use π(u, v)
to denote the unique path in T which connects u and v. For a
path π in T , we will use s(π) and t(π) to denote the two end
nodes of the path. We use nodes and vertices interchangeably,
as well as links and edges.

We study the same problem defined by Datta et al. [6], i.e.,
establishing a set of link-disjoint lightpaths on a tree topology
using a single wavelength to maximize the total one-hop traffic
demand supported by the chosen set of lightpaths. Since the
problem concentrates on one wavelength at a time, it can be
clearly formulated as follows without the notion of WDM and
wavelengths.

Definition 2.1: [Optimal Lightpath Establishment on Tree
(OLET)] We are given a tree network T = (V,E), where V
is the set of n nodes and E is the set of n− 1 links. Between
each pair of nodes u, v ∈ V , there is a given symmetric traffic
demand w(u, v) = w(v, u) ≥ 0 (we assume w(u, u) = 0 by
convention). For a path π in T , the path gain of π, denoted
by g(π), is g(π) = w(s(π), t(π)). The OLET problem seeks
a set of link-disjoint paths π1, π2, . . . , πL in T to maximize
the total gain, i.e., we want to find a set of link-disjoint paths
π1, π2, . . . , πL in T so that

∑L

k=1 g(πk) is maximized. We
use G(T) to denote this maximum value and call it the gain
of tree T . Any set of link-disjoint paths in T achieving a total
gain of G(T) is called an optimal set of link-disjoint paths
in T .

We use the simple tree network shown in Figure 1(a) and
the demand matrix shown in Table I to illustrate the concepts.
The entries in Table I represent the units of traffic demand
requested between each node pair (for example, the number of
OC-1s), where it is assumed that one wavelength is sufficient
to carry all of the traffic between any given node pair. The
tree in Figure 1(a) has 10 nodes and 9 links. Figure 1(b)

v1

v2 v3

v4 v6 v7v5

v8 v9v0

(a)

v1

v2 v3

v4 v6 v7v5

v8 v9v0

(b)

v1

v2 v3

v4 v6 v7v5

v8 v9v0

(c)

Fig. 1. (a) a tree network; (b) a set of link-disjoint paths; (c) an optimal set
of link-disjoint paths.

shows four link-disjoint paths π1 = (v0, v5, v8), π2 = (v2, v4),
π3 = (v3, v7), π4 = (v6, v3, v1, v2, v5, v9). The path gains
of the four paths are g(π1) = w(v0, v8) = 21, g(π2) =
w(v2, v4) = 1, g(π3) = w(v3, v7) = 13, g(π4) = w(v6, v9) =
1, respectively. Therefore the total gain of these four link-
disjoint paths is 36. Figure 1(c) shows six link-disjoint paths
achieving a total gain of 98.

Note that a path π is also a tree. However, g(π) (the path
gain of π, where π is viewed as a path) and G(π) (the gain
of π, where π is viewed as a tree) are different in general.

OPTIMAL LIGHTPATH ESTABLISHMENT ON A TREE 3

TABLE I

TRAFFIC DEMANDS.

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

v0 0 7 17 21 7 1 25 10 21 1
v1 7 0 10 1 6 7 8 1 1 31
v2 17 10 0 4 1 6 25 22 25 37
v3 21 1 4 0 13 17 6 13 15 1
v4 7 6 1 13 0 10 17 1 13 8
v5 1 7 6 17 10 0 1 9 21 19
v6 25 8 25 6 17 1 0 10 9 1
v7 10 1 22 13 1 9 10 0 13 1
v8 21 1 25 15 13 21 9 13 0 10
v9 1 31 37 1 8 19 1 1 10 0

For example, for π4 = (v6, v3, v1, v2, v5, v9) in Figure 1(b),
we have g(π4) = w(v6, v9) = 1, but G(π4) = w(v6, v2) +
w(v2, v9) = 62.

Note that the concept of the gain of a tree T generalizes
naturally to the gain of a forest F , which is the maximum
total gain achievable by a set of link-disjoint paths in F . We
will use this generalized concept to simplify notations.

Although the tree T is an undirected graph by definition, we
can treat it as a rooted tree by selecting any of the tree nodes
as the root of the tree. For example, the tree in Figure 1(a) can
be viewed as having root at node v1. There may be different
ways to turn an undirected tree into a rooted tree. However,
once the root node is chosen, the corresponding rooted tree
can be uniquely identified. We point out that the choice of the
rooted tree is an algorithmic technique, which does not affect
the computed solution of the problem. Throughout this paper,
we will assume that T is a rooted tree with root node r. Every
node u other than the root node has a unique parent node,
denoted by p(u). Every non-leaf node u in T has Ku ≥ 1
child nodes, denoted by uv1, uv2, . . . , uvKu

.
Definition 2.2: Let u be any node in T . We use T (u) to

denote the subtree rooted at node u. T (u) defines another
instance of the OLET problem. We use G(u) = G(T (u)) to
denote the gain of T (u).

We use the tree network shown in Figure 1(a) with demand
matrix shown in Table I to illustrate the concept of G(u). For
each leaf node u, we have G(u) = 0. Therefore we have
G(v4) = G(v0) = G(v8) = G(v9) = G(v6) = G(v7) = 0.
It is more involved to compute G(u) for a non-leaf node u.
To compute G(v3), we note that T (v3) is a tree with three
nodes v3, v6, v7, and two edges (v3, v6) and (v3, v7). For this
subtree, we could either establish one path (v6, v3, v7) with a
gain of w(v6, v7) = 10, or two link-disjoint paths (v3, v6)
and (v3, v7) with a total gain of w(v3, v6) + w(v3, v7) =
19. Therefore we conclude that G(v3) = 19. To compute
G(v5), we note that we have the following four sets of link-
disjoint paths: {(v0, v5, v8), (v5, v9)}, {(v0, v5, v9), (v5, v8)},
{(v8, v5, v9), (v5, v0)}, {(v5, v0), (v5, v8), (v5, v9)}, with the
last set achieving the maximum total gain of G(v5) = 41.

Definition 2.3: For any two nodes u, v ∈ T , we use π(u, v)
to denote the unique (undirected) path connecting u and v.
Let u be any node in T and α be any node in T (u). We use
T (u)/π(u, α) to denote the forest obtained by removing all
links on the path π(u, α) from tree T (u). We use P(u, α)

to denote the gain of T (u)/π(u, α). It is clear that P(u, u) =
G(u). Let x be a child node of u. We use T (u)/T (x) to denote
the set of links that belong to T (u), but not T (x).
Note that when α 6= u, P(u, α) + w(u, α) is in fact the
maximum gain achievable by a set of link-disjoint paths in
T (u), subject to the condition that π(u, α) is one of the link-
disjoint paths.

v2

v4 v5

v8 v9v0

(a) T (v2)/π(v2, v5)

v2

v4 v5

v9v0

(b) T (v2)/π(v2, v8)

v2 v3

v4 v6 v7v5

v1

(c) T (v1)/T (v5)

Fig. 2. Illustration of the concepts defined in Definition 2.3.

Figure 2 illustrates the concepts defined in Definition 2.3,
using the tree network shown in Figure 1(a) and the de-
mand matrix in Table I. Suppose u = v2 and α = v5,

4 XUE ET AL., TO APPEAR IN IEEE JSAC-OCN

T (u)/π(u, α) = T (v2)/π(v2, v5) contains the links shown
in Figure 2(a), i.e., all links in T (v2), except those on the
path π(v2, v5). Since G(v5) = 41 and w(v2, v4) = 1, we
observe that P(v2, v5) = 42. Suppose u = v2 and α = v8,
T (u)/π(u, α) = T (v2)/π(v2, v8) contains the links shown
in Figure 2(b), i.e., all links in T (v2), except those on
the path π(v2, v8). Since the maximum gain with the three
links (v2, v4), (v5, v0) and (v5, v9) is 21 (using the link-
disjoint paths (v2, v4), (v5, v0) and (v5, v9)), we observe that
P(v2, v8) = 21. Suppose u = v1 and x = v5, T (u)/T (x) =
T (v1)/T (v5) contains the links shown in Figure 2(c), i.e., all
links on T (v1), except those on T (v5).

The notion of P(u, α) introduced in the above definition
enables one to save and reuse computed information while
performing the bottom-up algorithm of the next section. This
leads to O(n2+nD2) computation of the required information.
In contrast, the algorithm of [6] requires O(n4) time for this
computation. We will revisit this point in Section 3 after the
proof of Theorem 3.2.

3. AN O(n2 + nD3) TIME ALGORITHM FOR OLET

In this section, we present an improved algorithm for the
OLET problem. The algorithm first performs a bottom-
up computation of various information, including G(T), and
stores the computed information at the nodes of the tree. It
then performs a top-down computation to establish the optimal
set of link-disjoint paths achieving the maximum gain. The
bottom-up computation is carried out by Algorithm 1 (OLET-
UP) while the top-down computation is carried out by Algo-
rithm 2 (OLET-DOWN). For ease of understanding, nodes are
colored either black or white within Algorithm 1. Similarly,
links are colored either black or white within Algorithm 2.

The main idea behind Algorithm 1 is as follows. We
compute the gain G(r) of the given tree T recursively by
computing the gains of subtrees of T . Suppose we wish to
compute the gain of the subtree T (u) rooted at node u. We first
note that the set of link-disjoint paths that achieve the gain of
T (u) must contain a set of paths that together include the links
connecting u to its child nodes. These paths form a subtree
T ′ of T (u). Removing the links of T ′ from T (u) will result
in one or more subtrees of T (u) that form a forest T ′′. The
gain of T (u) is the sum of the gain of T ′ and the gain of T ′′.
As an example, for the tree rooted at v1 in Figure 1(c), T ′ is
the subtree formed by the links (v1, v2), (v1, v3) and (v3, v6).
So the gain of T ′ is w(v2, v6) = 25. T ′′ is the forest formed
by the links (v3, v7), (v2, v4), (v2, v5), (v5, v0), (v5, v8), and
(v5, v9). The gain of this forest is 73. So the gain of T (u)
is 98. In Algorithm 1, the links of the maximum weighted
matching found in Step 5 provide information on finding the
tree T ′. The information required to compute the gain of the
forest is computed in Step 6.

We now proceed to give a step by step discussion of
Algorithm 1.

Throughout the execution of Algorithm 1, a node v has color
black if and only if the gain of T (v) has been computed. For
each leaf node v ∈ T , the gain of T (v) is set to G(v) := 0,
the gain of T (v)/T (v) is set to P(v, v) := 0, because P(v, v)

is equal to G(v). We mark each leaf node of T black and
mark each non-leaf node of T white. These are accomplished
in Step 1 of the algorithm.

If all tree nodes are marked black, we have computed the
gain of T and Algorithm 1 stops. Otherwise, there must exist a
white node u such that all of its child nodes are already marked
black. For such a white node u, we use Ku to denote its
number of child nodes and use uv1, uv2, . . . , uvKu

to denote
its child nodes. These actions are carried out in Step 2 of the
algorithm.

In Step 3 of the algorithm, for each child node uvk of u,
we compute the maximum total gain that can be achieved by a
set of link-disjoint paths in T (uvk)∪(u, uvk), and use mkk to
denote this value. Let k ∈ {1, 2, . . . ,Ku} be chosen. For each
node γ ∈ T (uvk), we use φ(u, γ) to denote the sum of the path
gain of π(u, γ) and the gain of the forest T (uvk)/π(uvk, γ),
i.e., φ(u, γ) = g(π(u, γ))+G(T (uvk)/π(uvk, γ)) = w(u, γ)+
P(uvk, γ). Note that φ(u, γ) is the maximum total gain that
can be achieved by a set of link-disjoint paths in T (uvk) ∪
(u, uvk), subject to the constraint that π(u, γ) is one of the
link-disjoint paths. Since we wish to maximize this gain, we
have mkk = max{φ(u, γ)|γ ∈ T (uvk)}. We use γ(u, uvk)
to denote a node in T (uvk) such that φ(u, γ(u, uvk)) =
mkk. The nodes γ(u, uvk), k = 1, . . . ,Ku, will be used by
Algorithm 2 to set up an optimal set of link-disjoint paths.

In Step 4 of the algorithm, for each pair of child nodes
uvi and uvj of u, we compute the maximum total gain
that can be achieved by a set of link-disjoint paths in
T (uvi) ∪ (uvi, u) ∪ (u, uvj) ∪ T (uvj), under the constraint
that the set of paths contains a path connecting a node in
T (uvi) with a node in T (uvj), and use mij to denote this
value. Let i and j be chosen such that 1 ≤ i < j ≤ Ku.
For each pair of nodes α and β such that α ∈ T (uvi) and
β ∈ T (uvj), we use ψ(α, β) to denote the sum of the path
gain of π(α, β), the gain of the forest T (uvi)/π(uvi, α),
and the gain of the forest T (uvj)/π(uvj , β), i.e.,
ψ(α, β) = g(π(α, β)) + G(T (uvi)/π(uvi, α)) +
G(T (uvj)/π(uvj , β)) = w(α, β) + P(uvi, α) + P(uvj , β).
Clearly, mij = max{ψ(α, β)|α ∈ T (uvi), β ∈ T (uvj)}. We
use α(uvi, uvj) and β(uvi, uvj) to denote a pair of nodes
where α(uvi, uvj) ∈ T (uvi) and β(uvi, uvj) ∈ T (uvj)
such that ψ(α(uvi, uvj), β(uvi, uvj)) = mij . The nodes
α(uvi, uvj), β(uvi, uvj), 1 ≤ i < j ≤ Ku, will be used by
Algorithm 2 to set up an optimal set of link-disjoint paths.

In Step 5 of the algorithm, we compute the gain G(u)
of tree T (u). In order to compute an optimal set of link-
disjoint paths in T (u), we need to decide how each of the
Ku links (u, uv1), . . . , (u, uvKu

) are used by the link-disjoint
paths. Note that a link (u, uvi) can be used by one of the
link-disjoint paths in one of the following three ways. (1)
(u, uvi) is used by a path π(u, γ(u, uvi)) connecting nodes
u and γ(u, uvi) ∈ T (uvi); (2) (u, uvi) is used together with
another link (u, uvj) (i < j) by a path connecting nodes
α(uvi, uvj) ∈ T (uvi) and β(uvi, uvj) ∈ T (uvj); (3) (u, uvi)
is used together with another link (u, uvj) (i > j) by a path
connecting nodes α(uvj , uvi) ∈ T (uvj) and β(uvj , uvi) ∈
T (uvi). For this purpose, we solve a maximum weighted
matching problem [7], [13] on a graph Gu with 2Ku nodes and

OPTIMAL LIGHTPATH ESTABLISHMENT ON A TREE 5

Ku(Ku−1)
2 +Ku links. To handle demand with zero value, we

assume in this paper that the maximum weighted matching is
one which not only has the maximum sum of edge weight, but
also has the maximum number of edges among all matchings
with the maximum sum of edge weight. This assumption does
not lose any generality, as for each edge e in the graph,
we can replace the edge weight w(e) by a 2-tuple (w(e), 1)
and use lexicographical order when comparing weights. The
graph Gu can be constructed in the following way: First,
build a complete graph on the vertices {uvk|1 ≤ k ≤ Ku},
where the edge (uvi, uvj) has weight wu(uvi, uvj) = mij

for 1 ≤ i < j ≤ Ku. Then for each k = 1, 2, . . . ,Ku, add
a vertex uvk and and an edge (uvk, uvk) with weight mkk.
G(u), the gain of T (u), is equal to the value of the maximum
weighted matching of Gu so constructed. Once a maximum
weighted matching Mu of Gu is computed, we not only know
the value of G(u), but also know that there exists a set Su of
link-disjoint paths in T (u) whose total gain is G(u) and that
(1) if edge (uvi, uvi) in Gu is an edge in the matching Mu,
then the edge (u, uvi) in T (u) is used by path π(u, γ(u, uvi))
in Su; (2) if edge (uvi, uvj) (with 1 ≤ i < j ≤ Ku) in Gu is
an edge in the matching Mu, then edges (u, uvi) and (u, uvj)
in T (u) are used together by path π(α(uvi, uvj), β(uvi, uvj))
in Su. In addition Su may contain other paths in T (uvk),
1 ≤ k ≤ Ku. These paths will be determined by Algorithm 2.

We use Figure 3 to illustrate the concepts used in Step 5.
Figure 3(a) shows a white node u that has four (black) child
nodes uv1, uv2, uv3, uv4. Figure 3(b) shows the graph Gu.
Suppose the computed maximum weighted matching Mu con-
tains the three edges {(uv1, uv1), (uv3, uv3), (uv2, uv4)}, as
shown in thick dark edges in Figure 1(b). Then we know that
G(u) = m11 +m33 +m24. Furthermore, we know that there
exists an optimal set Su of link-disjoint paths in T (u) such that
Su contains (1) the path π(u, γ(u, uv1)) (because (uv1, uv1) ∈
Mu); (2) the path π(u, γ(u, uv3)) (because (uv3, uv3) ∈
Mu); and (3) the path π(α(uv2, uv4), β(uv2, uv4)) (because
(uv2, uv4) ∈ Mu); together with (a) an optimal set of link-
disjoint paths in T (uv1)/π(uv1, γ(u, uv1)); (b) an optimal set
of link-disjoint paths in T (uv2)/π(uv2, α(uv2, uv4)); (c) an
optimal set of link-disjoint paths in T (uv3)/π(uv3, γ(u, uv3));
and (d) an optimal set of link-disjoint paths in T (uv4)/π(uv4,
β(uv2, uv4)). This is illustrated in Figure 3(c).

While computing mkk in Step 3, we need the value of
P(uvk, γ) for each γ ∈ T (uvk) (we also need these values
while computing mij for 1 ≤ i < j ≤ Ku in Step 4).
This means that if u is not the root node, then we need to
calculate P(u, α) for each α ∈ T (u). We compute these
values in Step 6. Recall that P(u, α) is the gain of the forest
T (u)/π(u, α). Therefore w(u, α) + P(u, α) is in fact the
maximum total gain achievable by a set of link-disjoint paths
in T (u), subject to the constraint that π(u, α) is one of the
paths in the set. If π(u, α) contains the node uvk, then in the
set of link-disjoint paths that achieve the gain of T (u)/π(u, α),
there will be no path using the link (u, uvk), so this gain
is equal to the weight of a maximum weighted matching
Mu,uvk

of the graph Gu,uvk
obtained by deleting the nodes

uvk and uvk from Gu. This computation is given in line 4 of
Step 6. This step involves computing Ku maximum weighted

u

����� ����� ���	� ����

(a) a white node u with four black child
nodes

��
�� ��
�� ��
�� ��
��

��
 � ��
 � ��
 � ��
 �

� ��� � ��� � ���

����� ����� ����� �����

����� �����
� � �

(b) graph Gu and its maximum weighted
matching

u

!�"�# !�"�$!�"	% !�"�&

')(*,+ *.-�/10 ')(*,+1*.-�23045(*.-�6 +1*.-�730 85(*.-�6 +1*.-�790

(c) top level disjoint paths derived from the
matching

Fig. 3. Illustration of the concepts used in Step 5 of Algorithm 1.

matchings and can be accomplished in O(K4
u) time using the

algorithms of [7], [13].
A complete execution of the algorithm on the example

defined by the tree in Figure 1(a) and the demand matrix in
Table I is illustrated in Appendix . The computation leads to
G(v1) = 98.

Theorem 3.1: At the time a node u is marked black during
the execution of Algorithm 1, we have the following facts.

1) For every node α ∈ T (u), we have color(α) = black.
2) G(u) is the gain of T (u). In addition, the gain G(u) of

T (u) can be achieved by a set Su of link-disjoint paths
in T (u), with the use of the links connecting node u
and its child nodes {uv1, uv2, . . . , uvKu

} decided by
the maximum matching Mu: if Mu contains a node
pair (uvi, uvj) with i < j, then Su contains path
π(α(uvi, uvj), β(uvi, uvj)) which uses both (u, uvi)
and (u, uvj); if Mu contains a node pair (uvi, uvi),
then Su contains path π(u, γ(u, uvi)) which uses link
(u, uvi).

6 XUE ET AL., TO APPEAR IN IEEE JSAC-OCN

Algorithm 1 OLET-UP(T, r, w), Part I:

Step 1 for each leaf node v ∈ T do

G(v) := 0;P(v, v) := 0; color(v) := black;
endfor

for each non-leaf node v ∈ T do

color(v) := white;
endfor

Step 2 if all tree nodes are marked black stop; Otherwise
let u be a white tree node, with all child nodes
already marked black. Let uv1, uv2, . . . , uvKu

be the
Ku child nodes of node u.

Step 3 for k = 1, 2, . . . ,Ku do

for each node γ ∈ T (uvk) do

φ(u, γ) := w(u, γ) + P(uvk, γ);
endfor

mkk := max{φ(u, γ)|γ ∈ T (uvk)};
Let γ(u, uvk) ∈ T (uvk) be a node such that
φ(u, γ(u, uvk)) = mkk.

endfor

Step 4 for each pair of indices i, j ∈ {1, 2, . . . ,Ku} such that
1 ≤ i < j ≤ Ku do

for each pair of α ∈ T (uvi) and β ∈ T (uvj) do

ψ(α, β) := w(α, β) + P(uvi, α) + P(uvj , β);
endfor

mij := max{ψ(α, β)|α ∈ T (uvi), β ∈ T (uvj)};
mji := mij ;
Let α(uvi, uvj) ∈ T (uvi) and β(uvi, uvj) ∈ T (uvj)
be two nodes such that
ψ(α(uvi, uvj), β(uvi, uvj)) = mij .

endfor

3) For any node α ∈ T (u), P(u, α) is the gain of the
forest T (u)/π(u, α). In addition, if π(u, α) contains a
child node uvk of u, the gain P(u, α) of T (u)/π(u, α)
can be achieved by a set Su,uvk

of link-disjoint paths in
T (u)/π(u, α), with the use of the links connecting node
u and its child nodes {uv1, . . . , uvKu

} \ {uvk} decided
by the maximum matching Mu,uvk

: if Mu,uvk
contains

a node pair (uvi, uvj) with i < j, then Su,uvk
con-

tains path π(α(uvi, uvj), β(uvi, uvj)) which uses both
(u, uvi) and (u, uvj); if Mu,uvk

contains a node pair
(uvi, uvi), then Su,uvk

contains path π(u, γ(u, uvi))
which uses link (u, uvi).

PROOF. All facts are true when only the leaf nodes are colored
black. We will prove that when a node u is colored black
during the execution of the algorithm, all three facts are
preserved.

Fact 1 is preserved because the node u chosen in Step 2
has all its child nodes marked black.

In oder to compute the gain G(u) of T (u), we construct
an auxiliary graph Gu and compute a maximum weighted
matching of Gu. Let Su be a set of link-disjoint paths in T (u)
that achieves the gain of T (u). Each link (u, uvi) ∈ T (u) can
be used in one of the following two ways in Su.

case-1: (u, uvi) is used, together with another link (u, uvj)
where i < j, on a path π(α, β) ∈ Su with end
nodes α ∈ T (uvi) and β ∈ T (uvj);

Algorithm 1 OLET-UP(T, r, w), Part II:

Step 5 Construct an auxiliary undirected link weighted graph
Gu = (Vu, Eu, wu), where the set of nodes is Vu =
{uv1, uv2, . . . , uvKu

, uv1, uv2, . . . , uvKu
}. For each

pair of indices 1 ≤ i < j ≤ Ku, Eu contains
a link (uvi, uvj) with weight wu(uvi, uvj) = mij .
For each index 1 ≤ k ≤ Ku, Eu also contains a
link (uvk, uvk) with weight wu(uvk, uvk) = mkk.
Compute a maximum weighted matching Mu of Gu.
Set G(u):=P(u, u):=wu(Mu), the weight of Mu.
Let M̂u be a set of node pairs (stored at node u) such
that

a. (uvi, uvj) ∈ M̂u if and only if (uvi, uvj) ∈
Mu;

b. (u, uvj) ∈ M̂u if and only if (uvj , uvj) ∈ Mu.
if u is the root of T then color(u) := black; stop;
endif

Step 6 for each k = 1, 2, ...,Ku do

Let Gu,uvk
be the subgraph of Gu with nodes uvk

and uvk removed.
Compute a maximum weighted matching Mu,uvk

of Gu,uvk
.

for each node α ∈ T (uvk) do P(u, α) :=
P(uvk, α) + wu(Mu,uvk

); endfor

Let M̂u,uvk
be the set of node pairs (stored at node

uvk) such that
a. (uvi, uvj) ∈ M̂u,uvk

if and only if
(uvi, uvj) ∈ Mu,uvk

;
b. (u, uvj) ∈ M̂u,uvk

if and only if
(uvj , uvj) ∈ Mu,uvk

.
endfor

color(u) := black; goto Step 2.

case-2: (u, uvi) is used on a path π(u, γ) ∈ Su where γ ∈
T (uvi).

We note that when case-1 happens, we can assume α =
α(uvi, uvj) and β = β(uvi, uvj), for otherwise, we can
replace α by α(uvi, uvj) and β by β(uvi, uvj) without
reducing the gain. Also, mij computed in Step 4 is the
summation of path gain of π(α(uvi, uvj), β(uvi, uvj) with
the gain of T (uvi)/π(uvi, α(uvi, uvj)) and the gain of
T (uvj)/π(uvj , β(uvi, uvj)). Similarly, when case-2 happens,
we can assume γ = γ(u, uvi). Also, mii computed in Step 3
is the summation of the path gain of π(u, γ(u, uvi)) with
the gain of T (uvi)/π(uvi, γ(u, uvi)). Therefore Fact 2 is
preserved when node u is colored black.

Now we prove the preservation of Fact 3. Note that we
want to compute the gain of the forest T (u)/π(u, α) for some
node α ∈ T (u). If α = u, π(u, α) becomes the empty path,
which implies T (u)/π(u, α) = T (u), a case handled by Fact
2. So we assume that α 6= u. Therefore α ∈ T (uvk) for some
k ∈ {1, 2, . . . ,Ku}. In this case, the gain of T (u)/π(u, α)
is the sum of the gain of T (u)/T (uvk) with the gain of
T (uvk)/π(uvk, α). Note that the gain of T (uvk)/π(uvk, α)
has been previously computed (when uvk is marked black) and
is stored in P(uvk, α). The gain of T (u)/T (uvk) is computed
by a maximum weighted matching of the graph Gu,uvk

, using
an argument similar to that used for the computation of the
gain of T (u). Therefore Fact 3 is also preserved when u is

OPTIMAL LIGHTPATH ESTABLISHMENT ON A TREE 7

marked black. 2

Theorem 3.2: Let n be the number of nodes in T and D be
the maximum node degree of T . Algorithm 1 has a worst-case
running time of O(n2 + nD3).
PROOF. Step 1 takes O(n) time. Each execution of Step 2
takes O(1) time, as we can keep the nodes with no white
child nodes in a FIFO queue. This step is executed O(n) times.
Therefore the total time required by all executions of Step 2
is O(n).

Each execution of Step 3 takes O(n) time as we spend O(1)
time for each descendant γ of node u (node γ loops over all
nodes in T (uvk), k loops over {1, 2, . . . ,Ku}). This step is
executed O(n) times. Therefore the total time required by all
executions of Step 3 is O(n2).

In Step 4 associated with node u, we have to deal with
Ku subtrees T (uvk) for k = 1, 2, . . . ,Ku. For each pair of
subtrees T (uvi) and T (uvj), we need to spend O(1) time for
each pair of nodes α ∈ T (uvi) and β ∈ T (uvj). We will not
try to bound the time required by each execution of Step 4.
Rather, we will bound the time required by all executions
of Step 4. Note that the same pair of nodes α and β will
be encountered (where we compute ψ(α, β)) in executions
of Step 4 in which the smallest common ancestor of α and
β is u. Since there are O(n2) node pairs, all executions of
Step 4 requires O(n2) time. Therefore the total time required
by Step 1-Step 4 is O(n2).

In the rest of the proof, we will analyze the time required by
all executions of Step 5 and Step 6. In Step 5 (at node u), we
need to compute a maximum weighted matching of a graph
with 2Ku nodes and Ku(Ku+1)

2 links. In Step 6 (at node u),
we need to compute Ku maximum weighted matchings each
for a graph with 2Ku − 2 nodes and Ku(Ku−1)

2 links. So the
time complexity of Step 5 is dominated by that of Step 6.
It is well-known that the maximum weighted matching for a
graph with |V | nodes can be computed in O(|V |3) time [7],
[13]. Therefore the matching computations at node u requires
O(K4

u) time, which is bounded by O(Ku×D3) where D is the
maximum node degree. Since

∑
u∈T Ku ≤ 2n, the complete

execution of Step 5 and Step 6 is bounded by O(nD3). To
summarize, we have shown that the worst-case running time
of Algorithm 1 is O(n2 + nD3). 2

We wish to point out that Algorithm 1 follows the same
principle as used in [6] (and in [9], for solving a special
case of OLET where each traffic demand is either 0 or 1).
In the algorithm of [6], at each node u, the entries mij for
1 ≤ i, j ≤ Ku are computed afresh, in O(n3) time. This leads
to O(n4) time computation when u loops over all nodes in
the tree. In our algorithm, we save useful partial information
P(u, α) for α ∈ T (u) at node u whenever it is computed. This
leads to O(n2+nD3) time computation when u loops over all
nodes in the tree, if Gabow’s maximum matching algorithm [7]
is used. In Section 4, we will show that the time complexity
can be improved to O(n2 + nD2), using the techniques of
Cunningham and Marsh [5] for solving a set of closely related
matching problems.

Once we finish the bottom-up computation, G(r) contains
the gain of T . However, an optimal set of link-disjoint paths
achieving this gain is not available yet. Therefore we apply

Algorithm 2 to compute an optimal set PAT H of link-disjoint
paths in a top-down process. This time, instead of coloring the
nodes, we color the links–a link is colored black only if a path
using that link has been added to PAT H.

Algorithm 2 OLET-DOWN(T, r, w)

Step 1 for each link (u, v) ∈ T do

color(u, v) := white;
endfor

PAT H = ∅; Set u := r, the root node of tree T .
Step 2 for each node pair (u, uvk) ∈ M̂u do

PAT H := PAT H ∪ π(u, γ(u, uvk));
for each link e on π(u, γ(u, uvk)) do

color(e) := black
endfor

endfor

for each node pair (uvi, uvj) ∈ M̂u do

// {without loss of generality, assuming i < j}
PAT H := PAT H ∪ π(α(uvi, uvj), β(uvi, uvj));
for each link e on π(α(uvi, uvj), β(uvi, uvj)) do

color(e) := black
endfor

endfor

Step 3 if all tree links are marked black, stop; Otherwise let
u be a non-leaf tree node such that

a. The link (p(u), u) connecting u and its parent
node p(u) in T is black;

b. There is a child v of u such that color(u, v) is
white.

Let uv1, . . . , uvKu
be the Ku child nodes of node u.

if color(u, uvk) = white for all k = 1, . . . ,Ku then

goto Step 2
else

goto Step 4
endif

Step 4 Here we must have Ku ≥ 2 and exactly one of the
Ku links (u, uv1), (u, uv2), . . . , (u, uvKu

) has black
color. Let this black link be (u, uvk), where k ∈
{1, 2, . . . ,Ku}.
for each node pair (u, uvj) ∈ M̂u,uvk

do

PAT H := PAT H ∪ π(u, γ(u, uvj));
for each link e on the u–γ(u, uvj) path do

color(e) := black
endfor

endfor

for each node pair (uvi, uvj) ∈ M̂u,uvk
do

// {without loss of generality, assuming i < j}
PAT H := PAT H ∪ π(α(uvi, uvj), β(uvi, uvj));
for each link e on π(α(uvi, uvj), β(uvi, uvj)) do

color(e) := black
endfor

endfor

In Step 1, we initialize PAT H to the empty set ∅ and color
all links to white. In Step 2, we have a non-leaf node u such
that all links on the path from u to the root are black and all
the links in T (u) are white. For each node pair (u, uvk) ∈ M̂u

8 XUE ET AL., TO APPEAR IN IEEE JSAC-OCN

(which is equivalent to (uvk, uvk) ∈ Mu), we add the path
π(u, γ(u, uvk)) to PAT H and color all links on the path
to black. For each node pair (uvi, uvj) ∈ M̂u with i < j
(which is equivalent to (uvi, uvj) ∈ Mu), we add the path
π(α(uvi, uvj), β(uvi, uvj)) to PAT H and color all links on
the path to black. Step 3 checks the stopping condition and
decides whether to goto Step 2 or to goto Step 4. When
control reaches Step 4, we have a node u such that (1) all
links on the path from u to the root of T are black; (2) a link
connecting u to one of its Ku children is white; (3) a link
connecting u to some other child of u is black. We claim that
there is exactly one black link connecting u to one of its
child nodes at this time. We note that we have not performed
Step 2 or Step 4 at node u yet. Therefore the only reason
for a link (u, uvk) to be black is because we have added to
PAT H a path using link (u, uvk) (and the link (p(u), u))
while performing a Step 2 or a Step 4 at one of node u’s
ancestors. Since link (p(u), u) can only be used by one of the
link-disjoint paths, no other child of u can be reached from
the root of T by a path of black links at this time. Here we
add paths to PAT H in a similar manner as in Step 2, except
that we use the matchings Mu,uvk

instead of the matching
Mu.

In the description of Algorithm 2, we have used a set
PAT H to contain the optimal set of link-disjoint paths
achieving the gain of tree T . Note that the paths are added
to PAT H in Step 2 and Step 4 of the algorithm. In practice,
at the time a path is added to PAT H, one can establish the
corresponding lightpath in the network.

A complete execution of the algorithm on the example
defined by the tree in Figure 1(a) and the demand matrix in
Table I is illustrated in Appendix . The computed optimal set
link-disjoint paths to this example of OLET is illustrated in
Figure 1(c).

Theorem 3.3: At the end of Algorithm 1, G(r) is the gain of
T , where r is the root of T . Algorithm 2 correctly constructs
a set S of link-disjoint paths in T in O(n) time.
PROOF. It follows from Fact 2 of Theorem 3.1 that G(r) is the
gain of T . It follows from Fact 2 and Fact 3 of Theorem 3.1
that Algorithm 2 correctly constructs the set of link-disjoint
paths PAT H which achieves the gain of T . Since Algorithm 2
traverses the tree T and visits each tree link no more than
twice, it takes O(n) time to complete. 2

4. AN O(n2 + nD2) TIME IMPLEMENTATION

In the previous section, we have shown that the running time
of our algorithm is bounded by O(n2 +nD3), where n is the
number of nodes in the tree network and D is the maximum
node degree. The term nD3 is due to the fact that at each node
u, we need to solve Ku + 1 maximum weighted matching
problems. As we pointed out, this can be accomplished in
O(K4

u) time by straightforward applications of the matching
algorithms in [7], [13].

We note that for each k = 1, 2, . . . ,Ku, the graph Gu,uvk

is obtained from the graph Gu by deleting the nodes uvk

and uvk. A natural question to ask is the following: Can we
compute a maximum weighted matching of Gu,uvk

in O(K2
u)

additional time, after spending O(K3
u) time to compute a

maximum weighted matching for Gu? The answer is YES due
to work by Cunningham and Marsh [5].

In [5] Cunningham and Marsh proved the following:

Lemma 4.1 ([5]): Let G = G(V,E, ω) be an edge
weighted undirected graph, where V is the set of vertices,
E is the set of edges, and ω(e) is the weight of edge e for
each e ∈ E. Let U be any given subset of V . Let ω′(·) be a
new edge weighting function such that ω′(e) 6= ω(e) implies
that at least one end node of edge e belongs to U . Assume
that a maximum perfect matching for G is already computed.
Then a maximum perfect matching for G′ = G(V,E, ω′) can
be computed in O(|U | × |V |2) additional time. 2

In the following, we discuss how Lemma 4.1 can be
used to improve the running time of Algorithm 1. Suppose
that we are executing Step 5 and Step 6 of Algorithm 1
at a node u. Let uv1, uv2, . . . , uvKu

be the child nodes of
u (see Figure 4(a) for the case of Ku = 5). The graph
Gu = Gu(Vu, Eu, wu) is constructed with vertex set Vu,
edge set Eu, and edge weighting function wu(·), where Vu

contains 2Ku vertices {uv1, . . . , uvKu
, uv1, . . . , uvKu

}, Eu

contains edges in the form (uvi, uvi) with weight mii =
φ(u, γ(u, uvi)), and edges in the form (uvi, uvj) with weight
mij = ψ(α(uvi, uvj), β(uvi, uvj)) (see Figure 4(b) for the
case of Ku = 5).

Let Gu be the complete graph on Vu obtained from Gu

by adding a zero-weight edge (x, y) for any pair of vertices
x, y ∈ Vu such that (x, y) 6∈ Eu. It is obvious that Gu

contains a maximum perfect matching and that each maximum
perfect matching of Gu corresponds to a maximum weighted
matching of Gu.

Let k ∈ {1, 2, . . . ,Ku}. We need to compute a maximum
weighted matching for Gu,uvk

, where Gu,uvk
is obtained from

Gu by deleting the vertices uvk and uvk.

Let M be a very big number, e.g., M = 1 +∑
1≤i<j≤n w(i, j). Let Gu,uvk

be the graph obtained from
Gu by modifying some of the edge weights in the following
way: For each edge in the form (uvk, uvj), change the weight
from mkj to −M (see Figure 4(c) for the case of Ku = 5
and k = 1 where zero-weight edges are not shown).

Due to the choice of the constant M , no maximum perfect
matching of Gu,uvk

can contain any edge with weight −M .
Therefore a maximum perfect matching of Gu,uvk

corresponds
to a maximum weighted matching of Gu,uvk

.

It follows from Lemma 4.1, a maximum perfect matching of
Gu,uvk

can be computed in O(K2
u) additional time, provided

that a maximum perfect matching for Gu has been pre-
computed. As a result, the maximum weighted matching of
Gu, together with the maximum matchings for Gu,uvk

, k =
1, 2, . . . ,Ku, can be computed using the algorithm of [5] in
O(K3

u) time. Therefore we have proved the following.

Corollary 4.1: Algorithms OLET-UP and OLET-DOWN
can be implemented in O(n2 + nD2) time, if the Cunning-
ham and Marsh algorithm is used to compute the maximum
matching for Gu and Gu,uvk

, k = 1, 2, . . . ,Ku. 2

OPTIMAL LIGHTPATH ESTABLISHMENT ON A TREE 9

�

����� ����� ����� ���
	 �����

(a)

��
��
��
��

��
�� ��
��

��
��
��
��

��
��
��
��

��
����
��

�����

� � ���� �

����

!#" $
%'&)(*+,

-./

02143576 8

9 :;

<= >
?@ABCD

(b)

E�F�G
E�F�G

E�F�H E�F�H

E�F�I
E�F�I

E�F�J
E�F�J

E�F�KE�F�K

L�G�G

M N NO�P P

QRRSTT

UWV
XZY[\

]^

_2`4ab7c d
e fg

hi j
klmnop

(c)

Fig. 4. (a) node u and its 5 child nodes; (b) the graph Gu, or the graph
Gu without showing the zero-weight edges; (c) the graph Gu,uv1

without
showing the zero-weight edges.

5. CONCLUSIONS

In this paper, we have presented a faster algorithm for
optimal lightpath establishment on a tree network. Let n and D
be the number of nodes in the network and the maximum node
degree, respectively. Our algorithm requires O(n2+nD2) time,
improving the previous best O(n4 + nD3) time algorithm [6]
by a factor of n. The improved running time is achieved by
making careful use of computed information, both in terms of
partial path information and in terms of maximum weighted
matchings of closely related graphs. As in the case of [6], our
algorithm can be used as a subroutine in a heuristic for the

general RWA problem. When used in such applications, our
algorithm will establish exactly the same set of lightpaths as
the algorithm of [6], but at a faster speed. The implementation
of our algorithm is straightforward, keeping in mind that the
maximum matchings of closely related graphs are computed
using the method of Cunningham and Marsh [5], rather than
using straightforward applications of the method of Gabow [7],
[13]. Algorithm 1 can be carried out with the aid of an FIFO
queue. Algorithm 2 can be carried out by a pre-order traversal
of the tree T .

ACKNOWLEDGMENT

We would like to thank Professor William H. Cunningham
for sharing with us his result on fast solutions of closely related
maximum matching problems, i.e., Lemma 4.1, which forms
the foundation of Section 4, as well as for bringing to our
attention references [5] and [9]. Thanks also go to Professors
Charles J. Colbourn and Goran Konjevod for helpful discus-
sions. The authors wish to thank the associate editor and the
anonymous reviewers whose comments on earlier versions of
this paper have helped to significantly improve the presentation
of this paper.

REFERENCES

[1] D. Banerjee and B. Mukherjee, Routing and Wavelength Assignment in
Large Wavelength Routed Optical Networks, IEEE Journal on Selected
Areas in Communications, Vol.14 (1996), pp. 903–908.

[2] I. Chlamtac, A. Ganz and G. Karmi, Lightpath communications: an
approach to high bandwidth optical WAN’s, IEEE Transactions on
Communications, Vol. 40(1992), pp. 1171–1182.

[3] M.C. Costa, L. Létocart and F. Roupin, A greedy algorithm for multicut
and integral multiflow in rooted trees, Operations Research Letters,
Vol. 31(2003), pp. 21–27.

[4] M.C. Costa, L. Létocart and F. Roupin, Minimal multicut and maximal
integer multiflow: A survey, European Journal of Operational Research,
Vol. 162(2005), pp. 55–69.

[5] W.H. Cunningham and A.B. Marsh, III, A primal algorithm for optimum
matching, Mathematical Programming Study 8 (1978), pp. 50–72.

[6] R. Datta, B. Mitra, S. Ghose and I. Sengupta, An algorithm for optimal
assignment of a wavelength in a tree topology and its applications in
WDM networks, IEEE Journal on Selected Areas of Communications,
Vol. 22(2004), pp. 1589–1600.

[7] H.N. Gabow, Implementation of algorithms for maximum matching and
nonbipartite graphs, PhD. thesis, Stanford University, Stanford, CA,
1974.

[8] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W.H. Freeman, 1979.

[9] N. Garg, V.V. Vazirani and M. Yannakakis, Primal-dual approxima-
tion algorithms for integral flow and multicut in trees, Algorithmica,
Vol. 18(1997), pp. 3–20.

[10] P.E. Green, Jr., Fiber Optic Networks, Prentice-Hall, Inc., 1993.
[11] X.-H. Jia, D.-Z. Du, X.-D. Hu, M.-K. Lee and J. Gu, Optimization

of wavelength assignment for QoS multicast in WDM networks IEEE
Transactions on Communications, Vol. 49(2001), pp. 341–350.

[12] J.M. Kleinberg, Approximation Algorithms for Disjoint Paths Problems,
Ph.D Dissertation, Department of Electrical and Computer Engineering,
MIT, 1998.

[13] E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt,
Rinehart and Winston, New York, 1976.

[14] R. Libeskind-Hadas and R. Melhem, Multicast routing and wavelength
assignment in multi-hop optical networks, IEEE/ACM Transactions on
Networking, Vol. 10(2002), pp. 621–629.

[15] B. Mukherjee, WDM-based local lightwave networks-Part I: single-hop
systems, IEEE Network Magazine, Vol. 6, No. 3(1992), pp. 12–27.

[16] B. Mukherjee, WDM-based local lightwave networks-Part II: multi-hop
systems, IEEE Network Magazine, Vol. 6, No. 4(1992), pp. 20–32.

[17] B. Mukherjee, Optical Communication Networks, McGraw Hill, 1997.

10 XUE ET AL., TO APPEAR IN IEEE JSAC-OCN

[18] A.E. Ozdaglar and D. Bertsekas, Routing and Wavelength Assign-
ment in Optical Networks, IEEE/ACM Transactions on Networking:
Vol. 11(2003), pp.259–272.

[19] M. Saad and Z.-Q. Luo, On the routing and wavelength assignment
in multifiber WDM networks IEEE Journal on Selected Areas in
Communications, Vol. 22(2004), pp. 1708–1717.

[20] Z.S. Zhang and A.S. Acampora, A heuristic wavelength assign-
ment algorithm for multihop WDM networks with wavelength rout-
ing and wavelength re-use, IEEE/ACM Transactions on Networking,
Vol. 3(1995), pp. 281–288.

[21] Y. Zhang, O. Yang and H. Liu, A Lagrangian relaxation and subgradient
framework for the routing and wavelength assignment problem in
WDM networks, IEEE Journal on Selected Areas in Communications,
Vol. 22(2004), pp. 1752–1765.

APPENDIX

This appendix is provided as an aid to the readers to ease
the understanding of Algorithm 1, using the example given in
Section 2. To save space, we ignore the values computed at
the leaf nodes.
At node v5 (u = v5, Ku = 3, uv1 = v0, uv2 = v8, uv3 = v9),
we perform the following computations:
Step 3: φ(v5, v0) = w(v5, v0) + P(v0, v0) = 1 + 0 = 1;

m11 = 1; γ(v5, v0) = v0;
φ(v5, v8) = w(v5, v8) + P(v8, v8) = 21 + 0 = 21;
m22 = 21; γ(v5, v8) = v8;
φ(v5, v9) = w(v5, v9) + P(v9, v9) = 19 + 0 = 19;
m33 = 19; γ(v5, v9) = v9;

Step 4: ψ(v0, v8) = w(v0, v8)+P(v0, v0)+P(v8, v8) = 21+
0 + 0 = 21;
m12 = 21; α(v0, v8) = v0; β(v0, v8) = v8;
ψ(v0, v9) = w(v0, v9)+P(v0, v0)+P(v9, v9) = 1+
0 + 0 = 1;
m13 = 1; α(v0, v9) = v0; β(v0, v9) = v9;
ψ(v8, v9) = w(v8, v9)+P(v8, v8)+P(v9, v9) = 10+
0 + 0 = 10;
m23 = 10; α(v8, v9) = v8; β(v8, v9) = v9;

Step 5: There is a unique maximum matching, with
weight equal to G(v5) = P(v5, v5) =
wv5

(Mv5
) = 41. This matching leads to

M̂v5
= {(v5, v0), (v5, v8), (v5, v9)}.

Step 6: For k = 1, we have P(v5, v0) = P(v0, v0) +
wv5

(Mv5,v0
) = 0 + 40 = 40;

M̂v5,v0
= {(v5, v8), (v5, v9)}.

For k = 2, we have P(v5, v8) = P(v8, v8) +
wv5

(Mv5,v8
) = 0 + 20 = 20;

M̂v5,v8
= {(v5, v0), (v5, v9)}.

For k = 3, we have P(v5, v9) = P(v9, v9) +
wv5

(Mv5,v9
) = 0 + 22 = 22;

M̂v5,v9
= {(v5, v0), (v5, v8)}.

At node v2 (u = v2, Ku = 2, uv1 = v4, uv2 = v5), we
perform the following computations:
Step 3: φ(v2, v4) = w(v2, v4) + P(v4, v4) = 1 + 0 = 1;

m11 = 1; γ(v2, v4) = v4;
φ(v2, v5) = w(v2, v5) + P(v5, v5) = 6 + 41 = 47;
φ(v2, v0) = w(v2, v0) + P(v5, v0) = 17 + 40 = 57;
φ(v2, v8) = w(v2, v8) + P(v5, v8) = 25 + 20 = 45;
φ(v2, v9) = w(v2, v9) + P(v5, v9) = 37 + 22 = 59;
m22 = 59; γ(v2, v5) = v9;

Step 4: ψ(v4, v5) = w(v4, v5)+P(v4, v4)+P(v5, v5) = 10+
0 + 41 = 51;

ψ(v4, v0) = w(v4, v0)+P(v4, v4)+P(v5, v0) = 7+
0 + 40 = 47;
ψ(v4, v8) = w(v4, v8)+P(v4, v4)+P(v5, v8) = 13+
0 + 20 = 33;
ψ(v4, v9) = w(v4, v9)+P(v4, v4)+P(v5, v9) = 8+
0 + 22 = 30;
m12 = 51; α(v4, v5) = v4; β(v4, v5) = v5;

Step 5: There is a unique maximum matching, with weight
equal to G(v2) = P(v2, v2) = wv2

(Mv2
) = 60. It

leads to M̂v2
= {(v2, v4), (v2, v5)}.

Step 6: For k = 1, we have P(v2, v4) = P(v4, v4) +
wv2

(Mv2,v4
) = 0 + 59 = 59;

M̂v2,v4
= {(v2, v5)}.

For k = 2, we have P(v2, v5) = P(v5, v5) +
wv2

(Mv2,v5
) = 41 + 1 = 42;

P(v2, v0) = P(v5, v0)+wv2
(Mv2,v5

) = 40+1 = 41;
P(v2, v8) = P(v5, v8)+wv2

(Mv2,v5
) = 20+1 = 21;

P(v2, v9) = P(v5, v9)+wv2
(Mv2,v5

) = 22+1 = 23;
M̂v2,v5

= {(v2, v4)}.
At node v3 (u = v3, Ku = 2, uv1 = v6, uv2 = v7), we
perform the following computations:
Step 3: φ(v3, v6) = w(v3, v6) + P(v6, v6) = 6 + 0 = 6;

m11 = 6; γ(v3, v6) = v6;
φ(v3, v7) = w(v3, v7) + P(v7, v7) = 13 + 0 = 13;
m22 = 13; γ(v3, v7) = v7;

Step 4: ψ(v6, v7) = w(v6, v7)+P(v6, v6)+P(v7, v7) = 10+
0 + 0 = 10;
m12 = 10; α(v6, v7) = v6; β(v6, v7) = v7;

Step 5: There is a unique maximum matching, with weight
equal to G(v3) = P(v3, v3) = wv3

(Mv3
) = 19. It

leads to M̂v3
= {(v3, v6), (v3, v7)}.

Step 6: For k = 1, we have P(v3, v6) = P(v6, v6) +
wv3

(Mv3,v6
) = 0 + 13 = 13;

M̂v3,v6
= {(v3, v7)}.

For k = 2, we have P(v3, v7) = P(v7, v7) +
wv3

(Mv3,v7
) = 0 + 6 = 6;

M̂v3,v7
= {(v3, v6)}.

At node v1 (u = v1, Ku = 2, uv1 = v2, uv2 = v3), we
perform the following computations:
Step 3: φ(v1, v2) = w(v1, v2) + P(v2, v2) = 10 + 60 = 70;

φ(v1, v0) = w(v1, v0) + P(v2, v0) = 7 + 41 = 48;
φ(v1, v4) = w(v1, v4) + P(v2, v4) = 6 + 59 = 65;
φ(v1, v5) = w(v1, v5) + P(v2, v5) = 7 + 42 = 49;
φ(v1, v8) = w(v1, v8) + P(v2, v8) = 1 + 21 = 22;
φ(v1, v9) = w(v1, v9) + P(v2, v9) = 31 + 23 = 54;
m11 = 70; γ(v1, v2) = v2;
φ(v1, v3) = w(v1, v3) + P(v3, v3) = 1 + 19 = 20;
φ(v1, v6) = w(v1, v6) + P(v3, v6) = 8 + 13 = 21;
φ(v1, v7) = w(v1, v7) + P(v3, v7) = 1 + 6 = 7;
m22 = 21; γ(v1, v3) = v6;

Step 4: ψ(v2, v3) = w(v2, v3)+P(v2, v2)+P(v3, v3) = 4+
60 + 19 = 83;
ψ(v2, v6) = w(v2, v6)+P(v2, v2)+P(v3, v6) = 25+
60 + 13 = 98;
ψ(v2, v7) = w(v2, v7)+P(v2, v2)+P(v3, v7) = 22+
60 + 6 = 88;
ψ(v0, v3) = w(v0, v3)+P(v2, v0)+P(v3, v3) = 21+

OPTIMAL LIGHTPATH ESTABLISHMENT ON A TREE 11

41 + 19 = 81;
ψ(v0, v6) = w(v0, v6)+P(v2, v0)+P(v3, v6) = 25+
41 + 13 = 79;
ψ(v0, v7) = w(v0, v7)+P(v2, v0)+P(v3, v7) = 10+
41 + 6 = 57;
ψ(v4, v3) = w(v4, v3)+P(v2, v4)+P(v3, v3) = 13+
59 + 19 = 91;
ψ(v4, v6) = w(v4, v6)+P(v2, v4)+P(v3, v6) = 17+
59 + 13 = 89;
ψ(v4, v7) = w(v4, v7)+P(v2, v4)+P(v3, v7) = 1+
59 + 6 = 66;
ψ(v5, v3) = w(v5, v3)+P(v2, v5)+P(v3, v3) = 17+
42 + 19 = 78;
ψ(v5, v6) = w(v5, v6)+P(v2, v5)+P(v3, v6) = 1+
42 + 13 = 56;
ψ(v5, v7) = w(v5, v7)+P(v2, v5)+P(v3, v7) = 9+
42 + 6 = 57;
ψ(v8, v3) = w(v8, v3)+P(v2, v8)+P(v3, v3) = 15+
21 + 19 = 55;
ψ(v8, v6) = w(v8, v6)+P(v2, v8)+P(v3, v6) = 9+
21 + 13 = 43;
ψ(v8, v7) = w(v8, v7)+P(v2, v8)+P(v3, v7) = 13+
21 + 6 = 40;
ψ(v9, v3) = w(v9, v3)+P(v2, v9)+P(v3, v3) = 1+
23 + 19 = 43;
ψ(v9, v6) = w(v9, v6)+P(v2, v9)+P(v3, v6) = 1+
23 + 13 = 37;
ψ(v9, v7) = w(v9, v7)+P(v2, v9)+P(v3, v7) = 1+
23 + 6 = 30;
m12 = 98; α(v2, v3) = v2; β(v2, v3) = v6;

Step 5: There is a unique maximum matching, with weight
equal to G(v1) = P(v1, v1) = wv1

(Mv1
) = 98. It

leads to M̂v1
= {(v2, v3)}.

Step 6: v1 is the root node. So we do not perform Step 6.

At this time, we know that the gain of the tree network T
in Figure 1(a) is G(v1) = 98.

This appendix is provided as an aid to the readers to ease
the understanding of Algorithm 2, using the example given in
Section 2. We assume that we have finished the execution of
Algorithm 1. We initialize PAT H = ∅ and traverse the tree
T , starting from the root node v1.

At node v1, we find that all links from v1 to its child nodes are
white (not used by any path yet). So we go to Step 2. We find
that M̂v1

= {(v2, v3)}. To establish the path corresponding to
the match (v2, v3) ∈ M̂v1

, we note that α(v2, v3) = v2 and
β(v2, v3) = v6. Therefore we establish a path connecting v2

and v6. This results in PAT H = {(v2, v6)}. We also color
all the links on this path to black. Next we visit node v2 in
the tree.

At node v2, we find that all links from v2 to its child nodes
are white (not used by any path yet). So we go to Step 2.
We find that M̂v2

= {(v2, v4), (v2, v5)}. So we establish a
path connecting v2 and γ(v2, v4) (which is v4) and a path
connecting v2 and γ(v2, v5) (which is v9). We color all the
links on these two paths to black. This results in PAT H =
{π(v2, v6), π(v2, v4), π(v2, v9)}. Next we visit node v5 in the
tree.

At node v5, we find that the link from v5 to its child node
v9 is black (already used by a path). So we go to Step 4.
We find that M̂v5,v9

= {(v5, v0), (v5, v8)}. For the match
(v5, v0), we establish a path connecting v5 and γ(v5, v0)
(which is v0). For the match (v5, v8), we establish a path
connecting v5 and γ(v5, v8) (which is v8). We color all the
links on these two paths black. This results in PAT H =
{π(v2, v6), π(v2, v4), π(v2, v9), π(v5, v0), π(v5, v8)}. Next we
visit node v3 in the tree.
At node v3, we find that the link from v3 to its child node
v6 is black (already used by a path). So we go to Step 4. We
find that M̂v3,v6

= {(v3, v7)}. For the match (v3, v7), we
establish a path connecting v3 and γ(v3, v7) (which is v7). We
color all the links on this path black. This results in PAT H =
{π(v2, v6), π(v2, v4), π(v2, v9), π(v5, v0), π(v5, v8), π(v3, v7)}.
These set of six link-disjoint paths has a gain of 98.

The computed optimal solution to this example of OLET

is illustrated in Figure 1(c).

12 XUE ET AL., TO APPEAR IN IEEE JSAC-OCN

Guoliang (Larry) Xue (SM’99) received the BS
degree (1981) in mathematics and the MS degree
(1984) in operations research from Qufu Teachers
University, Qufu, China, and the PhD degree (1991)
in computer science from the University of Min-
nesota, Minneapolis, USA. He is a Full Profes-
sor in the Department of Computer Science and
Engineering at Arizona State University. He has
held previous positions at Qufu Teachers University
(Lecturer, 1984-1987), the Army High Performance
Computing Research Center (Postdoctoral Research

Fellow, 1991-1993), the University of Vermont (Assistant Professor, 1993-
1999; Associate Professor, 1999-2001). His research interests include efficient
algorithms for optimization problems in networking, with applications to fault
tolerance, robustness, and privacy issues in networks ranging from WDM
optical networks to wireless ad hoc and sensor networks. He has published
over 140 papers in these areas, with many papers appearing in prestigious
conferences and journals such as ACM Mobihoc, IEEE Infocom, SIAM/ACM
SODA, IEEE/ACM Transactions on Networking, IEEE Journal on Selected
Areas in Communications, IEEE Transactions on Communications, IEEE
Transactions on Computers, SIAM Journal on Computing, and SIAM Journal
on Optimization. His research has been continuously supported by federal
agencies including NSF and ARO. He received the Graduate School Doctoral
Dissertation Fellowship from the University of Minnesota in 1990, a Third
Prize from the Ministry of Education of P.R. China in 1991, an NSF Research
Initiation Award in 1994, and an NSF-ITR Award in 2003. He is an Editor
of Computer Networks (COMNET), an Editor of IEEE Network, and an
Associate Editor of the Journal of Global Optimization. He has served on the
executive/program committees of many IEEE conferences, including Infocom,
Secon, Icc, Globecom and QShine. He served as the General Chair of IEEE
International Performance, Computing, and Communications Conference in
2005, and will serve as a TPC co-chair of IEEE Globecom’2006 Symposium
on Wireless Ad Hoc and Sensor Networks, as well as a TPC co-chair of IEEE
ICC’2007 Symposium on Wireless Ad Hoc and Sensor Networks. He also
serves on many NSF grant panels and is a reviewer for NSERC (Canada).

Weiyi Zhang (S’02) received the B.E. and M.E.
degrees from Southeast University, China, in 1999
and 2002 respectively. Currently he is a Ph.D student
in the Department of Computer Science and En-
gineering at Arizona State University. His research
interests include reliable communication in network-
ing, protection and restoration in WDM networks,
and QoS provisioning in communication networks.

Jian Tang (S’04) received the B.E. and M.E. degrees
from Beijing University of Posts and Telecommu-
nications, China, in 1998 and 2001 respectively.
Currently, he is a Ph.D candidate in the Computer
Science and Engineering Department of Arizona
State University. His research interest is in the area
of wireless networking and mobile computing with
emphases on routing, scheduling and cross-layer
design in wireless networks. He is a student member
of IEEE.

Krishnaiyan Thulasiraman (F’90) received the
Bachelor’s degree (1963) and Master’s degree (1965)
in electrical engineering from the University of
Madras, India, and the Ph.D degree (1968) in elec-
trical engineering from IIT, Madras, India. He holds
the Hitachi Chair and is Professor in the School of
Computer Science at the University of Oklahoma,
Norman, where he has been since 1994. Prior to
joining the University of Oklahoma, Thulasiraman
was professor (1981-1994) and chair (1993-1994)
of the ECE Department in Concordia University,

Montreal. He was on the faculty in the EE and CS departments of the IITM
during 1965-1981.

Dr. Thulasiraman’s research interests have been in graph theory, combi-
natorial optimization, algorithms and applications in a variety of areas in
CS and EE: electrical networks, VLSI physical design, systems level testing,
communication protocol testing, parallel/distributed computing, telecommuni-
cation network planning, fault tolerance in optical networks, interconnection
networks etc. He has published more than 100 papers in archival journals,
coauthored with M. N. S. Swamy two text books ”Graphs, Networks, and
Algorithms” (1981) and ”Graphs: Theory and Algorithms” (1992), both
published by Wiley Inter-Science, and authored two chapters in the Handbook
of Circuits and Filters (CRC and IEEE, 1995) and a chapter on ”Graphs and
Vector Spaces ” for the handbook of Graph Theory and Applications (CRC
Press,2003).

Dr. Thulasiraman has received several awards and honors: Endowed
Gopalakrishnan Chair Professorship in CS at IIT, Madras (Summer 2005),
Elected member of the European Academy of Sciences (2002), IEEE CAS
Society Golden Jubilee Medal (1999), Fellow of the IEEE (1990) and Senior
Research Fellowship of the Japan Society for Promotion of Science (1988). He
has held visiting positions at the Tokyo Institute of Technology, University of
Karlsruhe, University of Illinois at Urbana-Champaign and Chuo University,
Tokyo.

Dr. Thulasiraman has been Vice President (Administration) of the IEEE
CAS Society (1998, 1999), Technical Program Chair of ISCAS (1993, 1999),
Deputy Editor-in-Chief of the IEEE Transactions on Circuits and Systems I
(2004-2005), Co-Guest Editor of a special issue on ”Computational Graph
Theory: Algorithms and Applications” (IEEE Transactions on CAS , March
1988), , Associate Editor of the IEEE Transactions on CAS (1989-91, 1999-
2001), and Founding Regional Editor of the Journal of Circuits, Systems,
and Computers and an editor of the AKCE International Journal of Graphs
and Combinatorics. Recently, he founded the Technical Committee on ”Graph
theory and Computing” of the IEEE CAS Society.

