SIMPLE SENSITIVITY FORMULAS IN TERMS OF IMMITTANCE PARAMETERS

Indexing terms: Sensitivity analysis, Active circuits

Simple formulas are derived for computing the sensitivities of a network function with respect to its network elements for a lumped/distributed active network. These formulas are in terms of immittance parameters of an augmented network. It is shown that these formulas may be used directly for the computation of higher-order sensitivities.

Recently, formulas for 2nd-order sensitivities of a network function have been obtained in terms of partial derivatives of element currents or voltages with respect to element immitances. However, such formulas cannot easily be used to determine 2nd-order sensitivities. Hence it is desirable to obtain formulas for these sensitivities in terms of the immittance parameters of the network. In this letter, we first obtain such formulas for 1st-order sensitivities, and then indicate the procedure used to obtain formulas for higher-order sensitivities.

Consider an n-port lumped/distributed active network \(N \). Let each internal element be a 1-port or a 2-port element. Let there be \(E \) internal ports in \(N \). If these are also treated as external ports, then an \((n+E)\)-port network denoted by \(N^* \) can be obtained from \(N \). Let the first \(n \) ports of \(N^* \) correspond to the external ports of \(N \), and let \(N^* \) denote the adjoint of \(N \) (see Reference 2).

Consider any internal element of \(N \) having an admittance matrix \(Y_e \). Let the two ports of this element correspond to the ports \(j \) and \(\mu \) of \(N^* \), and let

\[
Y_e = \begin{bmatrix} Y_{ja} & Y_{j\mu} \\ Y_{\mu a} & Y_{\mu\mu} \end{bmatrix}
\]

(1)

If \(V_e \) and \(\psi_e \) denote the vector of voltages across the ports of an internal element in \(N \) and \(N^* \), respectively, it can be shown that

\[
\frac{\partial Z_{ji}}{\partial Y_{\lambda\mu}} = -\psi_e^T \frac{\partial Y_e}{\partial Y_{\lambda\mu}} \psi_e = -\psi_e \psi_e^T
\]

(2)

Now

\[
V_e = Z_{\mu j} I_j = Z_{\mu j}I_j
\]

since \(I_j \) is unity, and

\[
\psi_e = Z_{\mu j} \phi_i = Z_{\mu j} \phi_i
\]

since \(\phi_i \) is unity, where the symbol * denotes the parameters of \(N^* \). In obtaining eqn. 4, the fact that the impedance matrix of the adjoint of a network is the transpose of the impedance matrix of the network is utilised.\(^\dagger\)

Thus, from eqns. 2, 3 and 4,

\[
\frac{\partial Z_{ji}}{\partial Y_{\lambda\mu}} = -Z_{\mu j}^* Z_{\mu j}^*
\]

(5)

Eqn. 5 may be used directly to find the sensitivity components \(\partial Z_{ji}/\partial Y_{\lambda\mu} \) corresponding to lumped passive elements, as well as gyrators and v.c.t.s. These are given in Table 1. Now, for a c.v.t., \(Y_e \) does not exist, and hence eqn. 2 cannot be used. However, \(Z_e \) exists with \(Z_{ja} = Z_{ja} = Z_{\mu\mu} = 0 \) and \(Z_{\mu j} = r_{\mu j} \).

Then

\[
\frac{\partial Z_{ji}}{\partial r_{\mu j}} = \psi_e^T \frac{\partial Y_e}{\partial r_{\mu j}} \psi_e = \frac{Z_{ja} Z_{ja}^*}{r_{\mu j}^2}
\]

(6)

Table 1

<table>
<thead>
<tr>
<th>Elements</th>
<th>Parameters</th>
<th>Sensitivity components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductance</td>
<td>(G_e)</td>
<td>(\frac{\partial Z_{ji}}{\partial G_e} = -Z_{\mu j}^* Z_{\mu j}^*)</td>
</tr>
<tr>
<td>Elastance</td>
<td>(\Gamma_e = \frac{1}{L_e})</td>
<td>(\frac{\partial Z_{ji}}{\partial \Gamma_e} = -\frac{1}{L_e} Z_{\mu j}^* Z_{\mu j}^*)</td>
</tr>
<tr>
<td>Capacitance</td>
<td>(C_e)</td>
<td>(\frac{\partial Z_{ji}}{\partial C_e} = -sZ_{\mu j} Z_{\mu j}^*)</td>
</tr>
<tr>
<td>Gyrator</td>
<td>(Y_e = \begin{bmatrix} 0 & 0 \ \beta_{ja} & 0 \end{bmatrix})</td>
<td>(\frac{\partial Z_{ji}}{\partial \beta_{ja}} = -Z_{\mu j}^* Z_{\mu j}^*)</td>
</tr>
<tr>
<td>V.C.T.</td>
<td>(Y_e = \begin{bmatrix} 0 & 0 \ \delta_{ja} & 0 \end{bmatrix})</td>
<td>(\frac{\partial Z_{ji}}{\partial \delta_{ja}} = -Z_{\mu j}^* Z_{\mu j}^*)</td>
</tr>
<tr>
<td>C.V.T.</td>
<td>(Z_e = \begin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix})</td>
<td>(\frac{\partial Z_{ji}}{\partial Z_e} = -Z_{\mu j}^* Z_{\mu j}^*)</td>
</tr>
<tr>
<td>RC tapered lines</td>
<td>(Y_e = \begin{bmatrix} Y_{ja} & Y_{j\mu} \ Y_{\mu a} & Y_{\mu\mu} \end{bmatrix})</td>
<td>(\frac{\partial Z_{ji}}{\partial G_{ol}} = -\left(\frac{\partial Y_{ja}}{\partial G_{ol}} Z_{\mu j}^* Z_{\mu j} + \frac{\partial Y_{ja}}{\partial G_{ol}} Z_{\mu j} Z_{\mu j} + \frac{\partial Y_{ja}}{\partial G_{ol}} Z_{\mu j}^* Z_{\mu j} + \frac{\partial Y_{ja}}{\partial G_{ol}} Z_{\mu j} Z_{\mu j} \right))</td>
</tr>
<tr>
<td>Lossless tapered lines</td>
<td>(Y_e = \begin{bmatrix} \psi_{ja} & \psi_{j\mu} \ \psi_{\mu a} & \psi_{\mu\mu} \end{bmatrix})</td>
<td>(\frac{\partial Z_{ji}}{\partial \psi_{\mu j}} = -\left(\psi_{ja} Z_{\mu j}^* Z_{\mu j} + \psi_{ja} Z_{\mu j} Z_{\mu j} + \psi_{ja} Z_{\mu j}^* Z_{\mu j} + \psi_{ja} Z_{\mu j} Z_{\mu j} \right))</td>
</tr>
</tbody>
</table>

Reprinted from ELECTRONICS LETTERS, Vol.8, No.6
\[
\frac{\partial Z_{ii}}{\partial Y_{aa}} = -Z_{it}^* Z_{it}^*
\]
(6)
where \(g_{aa} = 1 / R_{oi} \).

Consider next an RC tapered line as the internal element of \(N \). Let it be described by
\[
R_i = R_{oi} f(x) \quad \frac{C_i}{C_{oi}} = g(x) a < x < b
\]
(7)
where \(R_i \) and \(C_i \) are the series resistance per unit length and the shunt capacitance per unit length, respectively. It should be pointed out that eqn. 5 cannot be used directly to compute the sensitivity of \(Z_{ij} \) with respect to \(R_{oi} \) or \(C_{oi} \), since all the elements of \(Y \), for an \(RC \) line depend on \(R_{oi} \) and \(C_{oi} \). Now
\[
\frac{\partial Z_{ij}}{\partial Y_{aa}} = \frac{\partial Y_{aa}}{\partial Y_{ia}} \frac{\partial Y_{aa}}{\partial Y_{ja}} + \frac{\partial Z_{ij}}{\partial Y_{ia}} \frac{\partial Y_{aa}}{\partial Y_{ja}} + \frac{\partial Z_{ij}}{\partial Y_{ja}} \frac{\partial Y_{aa}}{\partial Y_{ia}}
\]
(8)
where \(G_{oi} = 1 / R_{oi} \).

Using eqn. 5, eqn. 8 may be written as
\[
\frac{\partial Z_{ij}}{\partial Y_{aa}} = \left(\frac{\partial Y_{ia}}{\partial Y_{ii}} Z_{it}^* Z_{it}^* + \frac{\partial Y_{ia}}{\partial Y_{ji}} Z_{it}^* Z_{jt}^* + \frac{\partial Y_{ia}}{\partial Y_{ji}} Z_{it}^* Z_{jt}^* \right)
\]
(9)
Similarly, \(\partial Z_{ij} / \partial C_{oi} \) can be obtained, and is given in Table 1.

Consider an \(EC \) tapered line described by
\[
L_i = L_{oi} f(x) \quad \frac{C_i}{C_{oi}} = g(x) a < x < b
\]
(10)
where \(L_i \) and \(C_i \) are the series inductance and shunt capacitance per unit length. If the 'characteristic impedance' \(Z_{ec} \) is defined as
\[
Z_{ec} = \sqrt{(L_{oi} C_{oi})} = 1 / Y_{ec}
\]
then the admittance matrix for the \(LC \) line can be written as
\[
Y_e = Y_{ec} \begin{bmatrix} \psi_{ia} & \psi_{ja} \\ \psi_{ia} & \psi_{ja} \end{bmatrix}
\]
(11)
where \(\psi_{ia} \) etc. are all functions of \((L_{oi} C_{oi}) \) only. Assuming that \((L_{oi} C_{oi}) \) is constant, the sensitivity of \(Z_{ij} \) with respect to \(Y_{ec} \) may be obtained using eqns. 5 and 11, and is given in Table 1.

Consider next the voltage transfer \(T_{ij} \) between the \(j \)th and \(i \)th ports. Then
\[
T_{ij} = \frac{Z_{ji}}{Z_{ii}}
\]
(12)
\[
\frac{\partial T_{ij}}{\partial Y_{aa}} = \frac{\partial}{\partial Y_{aa}} \left(\frac{Z_{ji}}{Z_{ii}} \right) = \frac{1}{Z_{ii}} \frac{\partial Z_{ji}}{\partial Y_{ia}} + \frac{Z_{ji}}{Z_{ii}^2} \left(-\frac{\partial Z_{ii}}{\partial Y_{ia}} \right)
\]
\[
= \frac{1}{Z_{ii}} \left(-Z_{it}^* Z_{jt}^* \right) \frac{Z_{ji}}{Z_{ii}^2} \quad \text{and} \quad Z_{ii}^* T_{ij}^* + Z_{it}^* T_{ij}^* = \frac{Z_{ij}}{Z_{ii}}
\]
(13)
Dual expressions may be obtained for the admittance and current transfer functions.

Formulas for 2nd-order sensitivity components can now be obtained in a straightforward manner with the help of the formulas for 1st-order ones. For example, if \(p_1 \) and \(p_2 \) correspond to the admittances of \(R \), \(L \) or \(C \), then
\[
\frac{\partial^2 Z_{ij}}{\partial p_1 \partial p_2} = \frac{\partial}{\partial p_1} \left(\frac{\partial Z_{ij}}{\partial p_2} \right) = \frac{\partial}{\partial p_2} \left(\frac{\partial Z_{ij}}{\partial p_1} \right)
\]
\[
= Z_{it}^* Z_{jt}^* \frac{Z_{ii}}{Z_{ij}} + Z_{it}^* Z_{jt}^* \frac{Z_{ii}}{Z_{ij}} \quad \text{and} \quad Z_{it}^* Z_{jt}^* \frac{Z_{ii}}{Z_{ij}}
\]
(14)
Higher-order sensitivity components may be determined by the repeated use of Table 1.

Example: Consider the 2-port network shown in Fig. 1. The 2nd-order sensitivity of the transfer impedance \(Z_{12} \) with respect to the admittances of branches 2 and 4 is evaluated, using eqn. 14, as
\[
\frac{\partial^2 Z_{12}}{\partial Y_2 \partial Y_4} = Z_{14} Z_{24} + Z_{24} Z_{14} \quad \text{and} \quad Z_{12} = Z_{14} Z_{24} + Z_{24} Z_{14}
\]
(15)
where \(Z_{14} \), \(Z_{24} \), \(Z_{12} \), \(Z_{24} \), \(Z_{14} \) and \(Z_{24} \) are the open-circuit impedance parameters of the augmented 5-port network. These parameters can be easily evaluated and are given below:
\[
Z_{14} = \frac{Y_2 + Y_4}{Y_2 + Y_3 + Y_4}
\]
(16a)
\[
Z_{24} = \frac{Y_2 + Y_4}{Y_2 + Y_3 + Y_4}
\]
(16b)
\[
Z_{12} = \frac{Y_4}{Y_2 + Y_3 + Y_4}
\]
(16c)
\[
Z_{22} = \frac{Y_3 + Y_4}{Y_1 + Y_3 + Y_4}
\]
(16d)
where
\[
Y_1 = 1 / L, \quad Y_2 = \frac{r}{s} \quad \text{and} \quad Y_3 = G_2
\]
(17)
Substituting eqns. 16 and 17 into eqn. 15, we obtain
\[
\frac{\partial^2 Z_{12}}{\partial Y_2 \partial Y_4} = \frac{2G_2 r^2 s^2 + G_2 r s (r^2 G_2 + \alpha G_2 + \Gamma G_2)}{(s^2 G_2 + \alpha G_2 + \Gamma G_2)^2}
\]
(18)

Acknowledgment: This work was supported by the National Research Council of Canada under grant A-7789. It is part of the doctoral dissertation to be submitted by Champa Bhushan under Prof. M. N. S. Swamy.

M. N. S. SWAMY
C. BHUSHAN
E. THULASIRAMAN

Department of Electrical Engineering
Sir George Williams University
Montreal, Canada

References
2 Director, S. W., and Rogers, R. A.: 'Automated network design—the frequency domain case', IEEE Trans., 1969, CT-18, pp. 394-397
5 Director, S. W.: 'LU factorization in network sensitivity computations', ibid., 1971, CT-18, pp. 184-185

16th February 1972