ON THE NUMBER OF CONDUCTANCES REQUIRED FOR REALIZING Y AND K MATRICES

M. G. G. NAIDU, P. S. REDDY AND K. THULASIRAMAN

Indian Institute of Technology, Madras, India

SUMMARY

Upper bounds are established on the number of conductances required for realizing a real symmetric matrix Y as the short-circuit conductance matrix of a resistive n-port network containing no negative conductances, and for the realization of a real matrix K as the potential factor matrix of a similar network without negative conductances. These results are the consequence of the properties of the modified cut-set matrix of an n-port and a theorem in the theory of linear programming.

1. INTRODUCTION

Biorci1,2 conjectured that, at most $n(n+1)/2$ conductances are required for realizing a real symmetric matrix as the short-circuit conductance matrix of a resistive n-port network containing no negative conductances. Even after several years of research, this conjecture has been neither proved nor disproved. However, a lower bound is known for the realization of Y matrices when the port configuration of the required network is specified.3 In this paper, we establish upper bounds on the number of conductances required for realizing Y and K matrices. These results are the consequence of the properties of the modified cut-set matrix of an n-port and a theorem in the theory of linear programming.

2. AN UPPER BOUND ON THE NUMBER OF CONDUCTANCES REQUIRED FOR REALIZING A Y MATRIX

In this Section, we first summarize some results relating to the modified cut-set matrix of a resistive n-port network4 and also state a theorem in the theory of linear programming. These results are then used to establish an upper bound on the number of conductances required for realizing an $(n \times n)$ Y matrix by an $(n + p)$-node n-port network.

Consider a resistive n-port network N. Let the port configuration T of N be in p connected parts T_1, T_2, \ldots, T_p. Permitting edges with zero conductances, the graph of N can be considered to be complete. Let T_0 be a tree of N such that $T \subseteq T_0$. The branches of T will be called the port branches, and the remaining branches of T_0 will be referred to as the non-port branches.

Let C_0, the fundamental cut-set matrix of N with respect to the tree T_0, be partitioned as follows:

$$C_0 = \begin{bmatrix} C_{1:} \\ C_{2:} \end{bmatrix}$$

(1)

* K. Thulasiraman is currently with Concordia University, Montreal, Canada, on leave of absence from the Indian Institute of Technology, Madras, India.

Received 10 August 1975
Revised 16 February 1976

© 1977 by John Wiley & Sons, Ltd.
where the rows of C_1 correspond to the port branches and those of C_2 correspond to the non-port branches.

The cut-set admittance matrix Y_0 of N with respect to the tree T_0 is defined as

$$Y_0 = C_0 G C_0^t$$

$$= \begin{bmatrix} C_1 & G & C_1 \mid C_1 & G & C_2 \end{bmatrix} \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix}$$

(2)

where G is the diagonal matrix of edge conductances of N. The short-circuit conductance matrix Y of N is given by

$$Y = Y_{11} - Y_{12} Y_{22}^{-1} Y_{21}$$

(3)

The modified cut-set matrix of N is defined as

$$C = C_1 - Y_{12} Y_{22}^{-1} C_2$$

(4)

The following results have been proved in Reference 4:

Theorem 1

Let C be the modified cut-set matrix of a connected resistive n-port network N having a port configuration T. Let C_0 be the fundamental cut-set matrix of N with respect to a tree T_0 of which T is a subgraph. Further let C_1 and C_2, the submatrices of C_0, correspond respectively to the port branches and the non-port branches of T_0. Let Y be the short-circuit conductance matrix of N with respect to the port configuration T.

(a) If G' is the diagonal matrix of edge conductances of a connected n-port network N^* having the same port configuration as that of N and $CG' C_2 = 0$, then the modified cut-set matrix of N^* is also equal to C.

(b) Let

$$CG' C_1 = y$$

and

$$CG' C_2 = 0$$

where G' is the diagonal matrix of edge conductances of an n-port network N^* having the same port configuration as that of N. Then the modified cut-set matrix and the short-circuit conductance matrix of N^* are equal to C and Y, respectively.

Theorem 2

Two n-port networks have the same modified cut-set matrix if they have the same K matrix.

Consider next the following set of m simultaneous equations in n variables x_1, x_2, \ldots, x_n:

$$AX = b$$

(5)

where A is an $(m \times n)$ real matrix, X is the column vector of the variables x_1, x_2, \ldots, x_n and b is a column vector of real elements.

Any nonnegative solution of (5) is called a feasible solution. If any $(m \times m)$ nonsingular matrix is chosen from A, and if all the $(n-m)$ columns of this matrix are set equal to zero, the solution to the resulting system of equations is called a basic solution. If a basic solution is feasible, then it is called a basic feasible solution. Thus the number of nonzero variables in a basic feasible solution will be less than or equal to m, the number of equations. The following result is proved in Reference 6.

Theorem 3

Consider a set of m simultaneous equations in n variables ($n \geq m$)

$$Ax = b$$
If there exists a feasible solution \(x \geq 0 \) to these equations, then there exists a basic feasible solution.
We now prove the following theorem:

Theorem 4

If a matrix \(Y \) is realizable as the short-circuit conductance matrix of an \((n + p)\)-node resistive \(n \)-port, then it can be realized by an \(n \)-port network containing at most \(m = \{ n(n + 1)/2 + n(p - 1) \} \) conductances.

Proof

Let the matrix \(Y \) be the short-circuit conductance matrix of an \((n + p)\)-node \(n \)-port network contains \(m \) or less number of conductances, the theorem is proved. Otherwise, we proceed as follows to obtain an equivalent network containing, at most, \(m \) conductances.

Let \(C \) be the modified cut-set matrix of \(N_1 \). Let \(C_1 \) and \(C_2 \) be defined as in Theorem 1. Let \(G_1 \) be the diagonal matrix of edge conductances of \(N_1 \).

Consider the following sets of equations:

\[
\begin{align*}
CGC_1 &= 0 \quad (6a) \\
CGC_1 &= Y \quad (6b)
\end{align*}
\]

Note that each one of the matrices \(C \) and \(C_1 \) has \(n \) rows and the matrix \(C_2 \) has \((p - 1) \) rows. Also the number of variables in \(G \) is equal to \(l \) where \(l = (n + p)(n + p - 1)/2 \).

Hence, equation (6a) represents a set of \(n(p - 1) \) equations in \(l \) variables. Further, because of the symmetry of \(Y \), equation (6b) represents a set of \(n(n + 1)/2 \) equations in \(l \) variables. Thus equations (6) represent a set of \(m \) equations in \(l \) variables.

The edge-conductance matrix \(G_1 \) of the network \(N_1 \) is a feasible solution of (6). Hence, there exists a basic feasible solution \(G \). The number of nonzero variables in \(G_2 \) is less than or equal to \(m \). Since, by Theorem 1(b), \(G_2 \) is the matrix of conductances of an \(n \)-port network \(N_2 \) whose short-circuit conductance matrix is equal to \(Y \), we conclude that, for the given matrix \(Y \), there exists an \((n + p)\)-node realization containing, at most, \(m \) conductances.

Example 1

The matrix \(Y \) given below is the short-circuit conductance matrix of a 3-port network \(N_1 \) having the port configuration \(T \) shown in Figure 1.

\[
Y = \begin{bmatrix}
1.00 & -0.08 & -0.08 \\
-0.08 & 2.00 & 0.08 \\
-0.08 & 0.08 & 3.00
\end{bmatrix}
\]

![Figure 1. Port configuration for Example 1](image)

The diagonal matrix \(G_1 \) of edge conductances (all in siemens) of \(N_1 \) is given by

\[
G_1 = \text{diag} \{ g_{12}, g_{13}, g_{14}, g_{15}, g_{16}, g_{23}, g_{24}, g_{25}, g_{26}, g_{34}, g_{35}, g_{36}, g_{45}, g_{46}, g_{56} \}
\]

\[
= \text{diag} \{ 0.49, 0.06, 0.14, 0.45, 0.05, 0.54, 1.26, 0.45, 0.05, 1.08, 0.70, 0.70, 0.30, 0.30, 2.33 \}
\]
The modified cut-set matrix C of N_1 is obtained as follows:

$$C = \begin{bmatrix}
 1 & 0.8 & 0.8 & 0.7 & 0.7 & -0.2 & -0.2 & -0.3 & -0.3 & 0 & -0.1 & -0.1 & -0.1 & 0 \\
 0 & -0.6 & 0.4 & -0.2 & -0.2 & -0.6 & 0.4 & -0.2 & 1 & 0.4 & 0.4 & -0.6 & -0.6 & 0 \\
 0 & 0.1 & 0.1 & -0.3 & 0.7 & 0.1 & 0.1 & -0.3 & 0.7 & 0 & -0.4 & 0.6 & -0.4 & 0.6 & 1
\end{bmatrix}$$

Choosing the edges e_{23} and e_{45} as the nonport branches, we obtain the matrices C_1 and C_2 as follows:

$$C_1 = \begin{bmatrix}
 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1
\end{bmatrix}$$

$$C_2 = \begin{bmatrix}
 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0
\end{bmatrix}$$

A basic feasible solution G_2 for the set of equations

$$CGC_1^T = Y$$

and

$$CGC_2^T = 0$$

is then obtained using the MPS package available with the IBM 370/155 computer system.

The nonzero entries of G_2 are as follows:

$$g_{12} = 0.64800, \ g_{15} = 0.32000, \ g_{25} = 0.42286, \ g_{35} = 0.17143$$
$$g_{13} = 0.08000, \ g_{23} = 0.14857, \ g_{26} = 0.17143, \ g_{36} = 0.28571$$
$$g_{14} = 0.08000, \ g_{24} = 0.72000, \ g_{34} = 1.68000, \ g_{56} = 2.70857$$

For the case under consideration, $n = 3$ and $p = 3$, and so $m = 12$. Note that the number of nonzero entries in G_2 is equal to 12. Thus the 3-port network N_2 of which G_2 is the matrix of edge conductances is a realization of the given matrix Y containing, at most, m conductances.

3. AN UPPER BOUND ON THE NUMBER OF CONDUCTANCES REQUIRED FOR REALIZING A K MATRIX

In this Section, we establish an upper bound on the number of conductances required for the realization of a real matrix K as the potential factor matrix of an $(n+p)$-node n-port resistive network containing no negative conductances.

Theorem 5

If a real matrix K is realizable as the potential factor matrix of an $(n+p)$-node n-port network then it can be realized by an n-port network containing, at most, $(n(p-1)+(p-1))$ conductances.

Proof

Let the given matrix K be the potential factor matrix of an $(n+p)$-node n-port network N_1. If N_1 contains $(n(p-1)+(p-1))$ or less conductances, the theorem is proved. Otherwise, we proceed as follows to obtain an equivalent n-port network N_2 containing, at most, $(n(p-1)+(p-1))$ conductances.
CONDUCTANCES FOR REALIZING Y AND K MATRICES

Let \(C \) be the modified cut-set matrix of the \(n \)-port network \(N_1 \) realizing the given \(K \) matrix. Let \(G_1 \) be the diagonal matrix of edge conductances of \(N_1 \). Let the matrix \(G_2 \) be defined as in Theorem 1.

Consider any diagonal matrix \(G_2 \) of real nonnegative entries satisfying the equation

\[
CG_2G_1^T = 0
\]

(7)

Let \(G_2 \) be the matrix of edge conductances of a connected \((n + p) \)-node \(n \)-port network \(N_2 \). Then, by Theorem 1a, the modified cut-set matrix of \(N_2 \) is equal to \(C \). Also, by Theorem 2, the potential factor matrix of \(N_2 \) is equal to the matrix \(K \). To ensure that a solution \(G_2 \) of (7) corresponds to a connected \(n \)-port network, we proceed as follows:

Let the \(p \) connected parts of the port configuration of \(N_1 \) be denoted by \(T_1, T_2, \ldots, T_p \). Let \((S_q)_1 \) denote the sum of the conductances in the given network \(N_1 \) connecting vertices in \(T_i \) to those in \(T_j \). \((S_q)_2 \) will refer to the corresponding quantity in the required network \(N_2 \). Note that the port configuration of \(N_2 \) will be the same as that of \(N_1 \).

If all the ports of \(N_2 \) are short-circuited, the network \((N_2)_S \) that results will have \(p \) vertices. \((S_q)_S \) will represent the different conductances of \((N_2)_S \). If \((N_2)_S \) is connected, \(N_2 \) will also be connected.

Choose a set of \((p - 1) \) positive conductances \((S_q)_1 \)'s such that they constitute a tree of \((N_1)_S \). Let these conductances be denoted by

\[
(S_{q_{1k_1}}), (S_{q_{2k_2}}), \ldots, (S_{q_{p-1k_{p-1}}})
\]

If the corresponding conductances of \((N_2)_S \) are also positive, then, as mentioned earlier, the \(n \)-port network \(N_2 \) will be connected.

Consider then the following set of \((p - 1) \) equations:

\[
(S_{q_{jk}}) = (S_{q_{jk}})_1 \quad j = 1, 2, \ldots, p - 1
\]

(8)

Note that each \((S_{q_{jk}})_1 \) can be written as a sum of the entries of the matrix \(G \).

Any solution of (7) and (8) will correspond to the diagonal matrix of edge conductances of a connected \(n \)-port network.

Equations (7) and (8) together represent a set of \(np(p - 1) + (p - 1) \) equations in \((n + p)(n + p - 1)/2 \) variables. \(G_1 \), the diagonal matrix of edge conductances of \(N_1 \), is a feasible solution of these equations. Hence a basic feasible solution \(G_2 \) exists. The number of nonzero conductances in this basic feasible solution is less than or equal to \(np(p - 1) + (p - 1) \). Thus there exists a network \(N_2 \) (of which \(G_2 \) is the diagonal matrix of edge conductances) containing, at most, \(np(p - 1) + (p - 1) \) conductances. As stated earlier, the network \(N_2 \) will realize the given matrix \(K \). Hence the theorem.

Example 2

The matrix \(K \) given below is the potential factor matrix of a 4-port network \(N_1 \) having the port configuration shown in Figure 2.

\[
K = \begin{bmatrix}
1 & 1 & 1 & \frac{7}{9} \\
0 & 1 & \frac{5}{9} & \frac{1}{9} \\
0 & 0 & 1 & \frac{3}{9} \\
\frac{5}{9} & \frac{5}{9} & \frac{5}{9} & 1
\end{bmatrix}
\]

![Figure 2. Port configuration for Example 2](image-url)
The matrix \(G_1 \) of edge conductances (all in siemens) of \(N_1 \) is given by
\[
G_1 = \text{diag} \begin{bmatrix} 8_{12} & 8_{13} & 8_{14} & 8_{15} & 8_{16} & 8_{23} & 8_{24} & 8_{25} \\
8_{26} & 8_{34} & 8_{35} & 8_{36} & 8_{45} & 8_{46} & 8_{56} \end{bmatrix}
= \text{diag} \begin{bmatrix} \frac{9}{5} & \frac{1}{2} & \frac{2}{9} & \frac{1}{6} & \frac{10}{9} & \frac{6}{9} & \frac{3}{5} & \frac{9}{9} \\
\frac{9}{9} & \frac{7}{9} & \frac{3}{9} & \frac{1}{9} & \frac{16}{9} & \frac{12}{9} & \frac{4}{9} & \frac{8}{9} \end{bmatrix}
\]

The modified cut-set matrix \(C \) of \(N_1 \) is obtained as follows:
\[
C = \begin{bmatrix}
1 & 1 & 1 & \frac{8}{9} & \frac{3}{9} & 0 & 0 & -\frac{9}{9} & -\frac{9}{9} & 0 & -\frac{9}{9} & -\frac{9}{9} & -\frac{9}{9} & 0 \\
0 & 0 & 1 & \frac{9}{6} & \frac{3}{9} & 1 & 1 & \frac{9}{9} & 0 & -\frac{9}{9} & -\frac{9}{9} & -\frac{9}{9} & 0 \\
0 & 0 & 0 & -\frac{9}{9} & \frac{9}{9} & 0 & 0 & -\frac{9}{9} & -\frac{9}{9} & 0 & -\frac{9}{9} & -\frac{9}{9} & 1
\end{bmatrix}
\]

Choosing the edge \(e_{45} \) connecting the vertices 4 and 5 as the nonport branch we obtain \(G_2 \) as follows:
\[
G_2 = \begin{bmatrix} 8_{12} & 8_{13} & 8_{14} & 8_{15} & 8_{16} & 8_{23} & 8_{24} & 8_{25} & 8_{26} & 8_{34} & 8_{35} & 8_{36} & 8_{45} & 8_{46} & 8_{56} & 0 \end{bmatrix}
= \begin{bmatrix} 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}
\]

In \((N_1)_S, S_{12} \), the combination of the conductances \(g_{15}, g_{16}, g_{25}, g_{26}, g_{35}, g_{36}, g_{45} \) and \(g_{46} \) forms a tree. A basic feasible solution \(G_2 \) to the following sets of equations is required.
\[
CG_2G_2^T = 0
\]
\[
(S_{12}) = (S_{12})_1 \quad \text{i.e.,} = 9
\]

After substituting for \(C \) and \(C_2 \), the above simplifies to the following:
\[
\begin{bmatrix}
0 & 0 & 0 & 7 & 7 & 0 & 0 & -2 & -2 & 0 & -2 & -2 & -2 & -2 & 0 \\
0 & 0 & 0 & 5 & 5 & 0 & 0 & 5 & 5 & 0 & -4 & -4 & -4 & -4 & 0 \\
0 & 0 & 0 & 3 & 3 & 0 & 0 & 3 & 3 & 0 & 3 & 3 & -6 & -6 & 0 \\
0 & 0 & 0 & -5 & 4 & 0 & 0 & -5 & 4 & 0 & -5 & 4 & -5 & 4 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0
\end{bmatrix}
= \begin{bmatrix} 0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
9 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \end{bmatrix}
\]

Using the MPS package, the following basic feasible solution \(G_2 \) is obtained. The nonzero entries of \(G_2 \) (all in siemens) are given by
\[
g_{16} = 2.0 \quad g_{25} = 2.0 \quad g_{36} = 2.0 \quad g_{45} = 2.0 \quad g_{46} = 1.0
\]
CONDUCTANCES FOR REALIZING Y AND K MATRICES

Note that, in this case, \(n = 4 \) and \(p = 2 \). Hence \(n(p-1)+(p-1) = 5 \). It may be seen that \(G_2 \) contains five nonzero entries. The network \(N_2 \) of which \(G_2 \) is the diagonal matrix of edge conductances is a realization of the matrix \(K \) containing \(n(p-1)+(p-1) \) conductances.

4. CONCLUSIONS

In this paper, we have established upper bounds on the number of conductances required for realizing \(Y \) and \(K \) matrices. According to Theorem 4, the maximum number of conductances required for realizing any \((n \times n)\) \(Y \) matrix by an \((n+2)\)-node \(n \)-port network is equal to \(n(n+1)/2+n \). In a recent paper, it was shown that any \(Y \) matrix realizable by an \((n+1)\)-node \(n \)-port network containing no zero conductances can be realized by an \(n \)-port network containing, at most, \(n(n+1)/2+1 \) conductances, which is less than the maximum number of conductances required according to Theorem 5. It may, therefore, be expected that the approach of Reference 7 can be generalized to obtain \((n+p)\)-node realizations of \(Y \) matrices of \((n+1)\)-node \(n \)-port networks containing, at most, \(n(n+1)/2(p-1)/2 \) conductances.

REFERENCES