Property-Based Testing
a catalog of classroom examples

Rex Page
University of Oklahoma

supported by CCF program of NSF
Knowing What It Does

Dialogue

- **Socrates**: How do you know what your software does?
- **Engineer**: I test it.

- **Socrates**: How do you test it?
- **Engineer**: I think of things that might happen and test them.

- **Socrates**: How many tests?
- **Engineer**: About four. Maybe five. Two or three, anyway.

- **Socrates**: That about covers it?
- **Engineer**: Yeah, I check it out pretty well.

- **Socrates**: How about testing all the cases?
- **Engineer**: Well, maybe for really complicated programs.

- **Socrates**: How many tests then?
- **Engineer**: A lot ... hundreds for sure.
What to Do?

- A program is a formula in a formal system
 - It has a precise meaning
 - Reasoning about its meaning is an application of logic

- Functional programs are especially attractive
 - Ordinary, algebraic reasoning based on equations
 - Classical logic
 - Not exotic variants like temporal logic, modal logic, ...
Programs = Axiomatic Equations

A program is a formula in a formal system
- Its meaning can be specified precisely
- So, reasoning about its meaning is an application of logic

Functional programs are especially attractive
- Ordinary, algebraic reasoning based on equations
- Classical logic
 - Not exotic variants like temporal logic, modal logic, ...

Functional program = set of equations \{axioms\}

\[
\begin{align*}
(first \ (cons \ x \ xs)) &= x & \{first\} \\
(rest \ (cons \ x \ xs)) &= xs & \{rest\} \\
(cons \ x_0 \ (x_1 \ x_2 \ ... \ x_n)) &= (x_0 \ x_1 \ x_2 \ ... \ x_n) & \{cons\} \\
(append \ nil \ ys) &= ys & \{app0\} \\
(append \ (cons \ x \ xs) \ ys) &= (cons \ x \ (append \ xs \ ys)) & \{app1\}
\end{align*}
\]

Criteria for defining operations
- Consistent, Comprehensive, Computational \{the 3 C's\}
What about Tests?

- **Functional program = set of equations {axioms}**

 \[
 \begin{align*}
 \text{first} \ (\text{cons} \ x \ \text{xs}) &= x \\
 \text{rest} \ (\text{cons} \ x \ \text{xs}) &= \text{xs} \\
 \text{cons} \ x_0 \ (x_1 \ x_2 \ \ldots \ x_n) &= (x_0 \ x_1 \ x_2 \ \ldots \ x_n) \\
 \text{append} \ \text{nil} \ \text{ys} &= \text{ys} \\
 \text{append} \ (\text{cons} \ x \ \text{xs}) \ \text{ys} &= (\text{cons} \ x \ (\text{append} \ \text{xs} \ \text{ys}))
 \end{align*}
 \]

 \{\text{first}, \ \text{rest}, \ \text{cons}, \ \text{app0}, \ \text{app1}\}

- **Test = Boolean formula expressing expectation**

 - Derivable (the programmer hopes) from the program {axioms}

 \[
 \text{append} \ \text{xs} \ (\text{append} \ \text{ys} \ \text{zs}) = (\text{append} \ (\text{append} \ \text{xs} \ \text{ys}) \ \text{zs})
 \]

 \{\text{assoc}\}
Programs vs Tests

- **Functional program = set of equations {axioms}**

 \[
 \begin{align*}
 &\text{append } \text{nil } y = y \quad \{\text{app0}\}, \\
 &\text{append } (\text{cons } x x) y = (\text{cons } x (\text{append } x y)) \quad \{\text{app1}\}
 \end{align*}
 \]

- **Test = Boolean formula expressing expectation**

 - Derivable (the programmer hopes) from the program {axioms}
 \[
 \begin{align*}
 \text{append } x y z = \text{append } x y z \quad \{\text{assoc}\}
 \end{align*}
 \]

- **Program = Equations = Tests**

 - Programs and tests are based on **the same idea** (equations)
 - **Program**
 \[
 \begin{align*}
 &\text{append } \text{nil } y = y \quad ;\text{app0}, \\
 &\text{append } (\text{cons } x x) y = (\text{cons } x (\text{append } x y)) \quad ;\text{app1}
 \end{align*}
 \]
 - **Test**
 \[
 \begin{align*}
 \text{append } x y z = \text{append } x y z \quad ;\text{assoc}
 \end{align*}
 \]
Program = Tests

- **Functional program = set of equations {axioms}**

 \[
 \begin{align*}
 (\text{append } \text{nil} \ ys) &= ys \\
 (\text{append } (\text{cons } x \ xs) \ ys) &= (\text{cons } x \ (\text{append } xs \ ys))
 \end{align*}
 \]

- **Test = Boolean formula expressing expectation**

 - Derivable (the programmer hopes) from the program {axioms}

 \[
 (\text{append } xs \ (\text{append } ys \ zs)) = (\text{append } (\text{append } xs \ ys) \ zs)
 \]

- **Program: axiomatic equations**

  ```lisp
  (defun append (xs ys)
    (if (consp xs)
        (cons (first xs) (append (rest xs) ys))
        ys))
  ```

- **Tests: derivable equations**

  ```lisp
  (defproperty append-associative
    (xs :value (random-list-of (random-symbol)))
    (ys :value (random-list-of (random-symbol)))
    (zs :value (random-list-of (random-symbol)))
    (equal (append xs (append ys zs))
           (append (append xs ys) zs)))
  ```

ACL2 function definition

Dracula automated testing
Hughes Property Categories

- Comparing results from two ways of doing something
 - (one-way x) = (other-way x)
 - It's nice if one way is "obviously correct"
 - Even if it's not, checking it from two angles helps

- Checking that one function inverts another
 - (decode (encode x)) = x
 - Uncommon to make consistent errors both ways
Hughes Property Categories

- Comparing results from two ways of doing something
 - \((\text{one-way } x) = (\text{other-way } x)\)
 - It's nice if one way is "obviously correct"
 - Even if it's not, checking it from two angles helps

- Checking that one function inverts another
 - \((\text{decode (encode x)}) = x\)
 - Uncommon to make consistent errors both ways

- Useful properties often fall into one of these types
 - An observation from experience of John Hughes
 - Categories help programmers conjure up good tests
Hughes Property Categories

- Comparing results from two ways of doing something
 - \((\text{one-way } x) = (\text{other-way } x)\)
 - It's nice if one way is "obviously correct"
 - Even if it's not, checking it from two angles helps

- Checking that one function inverts another
 - \((\text{decode } (\text{encode } x)) = x\)
 - Uncommon to make consistent errors both ways

- Useful properties often fall into one of these types
 - An observation from experience of John Hughes
 - Categories help programmers conjure up good tests

- Same categories in classroom examples?
 - Software properties from a decade of courses at OU
Informal Specs and Properties

- Informal specifications of some list operators

\[(\text{append } (x_1 \ x_2 \ \ldots \ x_m) (y_1 \ y_2 \ \ldots \ y_n)) = (x_1 \ x_2 \ \ldots \ x_m \ y_1 \ y_2 \ \ldots \ y_n)\]

\[(\text{prefix } n (x_1 \ x_2 \ \ldots \ x_n \ x_{n+1} \ x_{n+2} \ \ldots)) = (x_1 \ x_2 \ \ldots \ x_n)\]

\[(\text{suffix } n (x_1 \ x_2 \ \ldots \ x_n \ x_{n+1} \ x_{n+2} \ \ldots)) = (x_{n+1} \ x_{n+2} \ \ldots)\]

- Some equations the operators satisfy in well-chosen cases

Axiomatic Properties

- Definitions:
 - (append nil ys) = ys \; \text{app0}
 - (append (cons x xs) ys) = (cons x (append xs ys)) \; \text{app1}
 - (prefix 0 xs) = nil \; \text{pfx0a}
 - (prefix n nil) = nil \; \text{pfx0b}
 - (prefix (+ n 1) (cons x xs)) = (cons x (prefix n xs)) \; \text{pfx1}
 - (suffix 0 xs) = nil \; \text{sfx0}
 - (suffix (+ n 1) (cons x xs)) = (suffix n xs) \; \text{sfx1}

- Tests:
 - (append xs (append ys zs)) = (append (append xs ys) zs) \; \text{assoc}
 - (prefix (len xs) (append xs ys)) = xs \; \text{app-pfx}
 - (suffix (len xs) (append xs ys)) = ys \; \text{app-sfx}

Derived Properties
ACL2 Syntax for Those Equations

Axiomatic properties

(defun append (xs ys)
 (if (consp xs)
 (cons (first xs) (append (rest xs) ys))
 ys))

(defun prefix (n xs)
 (if (and (posp n) (consp xs))
 (cons (first xs) (prefix (- n 1) (rest xs)))
 nil))

(defun suffix (n xs)
 (if (posp n)
 (suffix (- n 1) (rest xs))
 xs))

Derived properties for testing or verification

(defthm app-assoc
 (equal (append xs (append ys zs))
 (append (append xs ys) zs)))

(defthm app-pfx
 (implies (true-listp xs)
 (equal (prefix (len xs) (append xs ys)) xs)))

(defthm app-sfx
 (equal (suffix (len xs) (append xs ys)) ys))
Theorem = Property
without :value, "implies" for ":where"

- Axiomatic properties

 \[(\text{defun append} \ (xs \ ys) \]
 \[(\text{if} \ (\text{consp} \ xs) \]
 \[(\text{cons} \ (\text{first} \ xs) \ (\text{append} \ (\text{rest} \ xs) \ ys)) \]
 \[ys) \]
 \[(\text{defun prefix} \ (n \ xs) \]
 \[(\text{if} \ (\text{and} \ (\text{posp} \ n) \ (\text{consp} \ xs)) \]
 \[(\text{cons} \ (\text{first} \ xs) \ (\text{prefix} \ (- \ n \ 1) \ (\text{rest} \ xs))) \]
 \[\text{nil}) \]
 \[(\text{defun suffix} \ (n \ xs) \]
 \[(\text{if} \ (\text{posp} \ n) \]
 \[(\text{suffix} \ (- \ n \ 1) \ (\text{rest} \ xs)) \]
 \[xs) \]

- Derived properties for testing or verification

 \[(\text{defthm app-pfx} \]
 \[(\text{implies} \ (\text{true-listp} \ xs) \]
 \[(\text{equal} \ (\text{prefix} \ (\text{len} \ xs) \ (\text{append} \ xs \ ys)) \ xs)) \]
 \[(\text{defproperty app-pfx-as-property} \]
 \[(\text{xs :value} \ (\text{random-list-of} \ (\text{random-symbol})) \]
 \[:\text{where} \ (\text{true-listp} \ xs) \]
 \[(\text{equal} \ (\text{prefix} \ (\text{len} \ xs) \ (\text{append} \ xs \ ys)) \ xs)) \]
More Properties

- Additional derived properties of append, prefix, suffix

 (defthm app-preserves-len
 (equal (len (append xs ys))
 (+ (len xs) (len ys))))

 (defthm app-conserves-elements
 (iff (member-equal a (append xs ys))
 (or (member-equal a xs) (member-equal a ys))))

 (defthm pfx-len
 (implies (natp n) (<= (len (prefix n xs)) n))
 (defthm sfx-len
 (implies (natp n) (<= (len (suffix n xs))
 (max 0 (- (len xs) n))))))

- Derived properties for testing or verification

 (defthm app-assoc
 (equal (append xs (append ys zs))
 (append (append xs ys) zs)))

 (defthm app-pfx
 (implies (true-listp xs)
 (equal (prefix (len xs) (append xs ys)) xs))
 (defthm app-sfx
 (equal (suffix (len xs) (append xs ys)) ys))
Typical Classroom Examples

- **Commuting diagram properties**
 - Append preserves length and conserves elements
 - Law of added exponents: \(x^m x^n = x^{m+n}\)
 - Russian peasant exponentiation: \(x^n = x \cdot x \cdot \ldots \cdot x = x^{\lfloor n/2 \rfloor} x^{n \mod 2}\)
 - Scalar times vector: \(s \cdot x_k = k^{\text{th}}\) element of \(s \cdot [x_1, x_2, \ldots, x_n]\)
 - Nested recursion vs tail recursion (eg, list-reversal, Fibonacci)
 - Arithmetic on numerals
 - \((\text{numb} (\text{add} (\text{bits } x) \ (\text{bits } y)))) = x + y\)
 - \((\text{numb} (\text{mul} (\text{bits } x) \ (\text{bits } y)))) = x \cdot y\)
 - \((\text{low-order-bit} (\text{bits} (2 \cdot x))) = 0\)
 - \((\text{numb} (\text{insert-high-order-bits } n \ (\text{bits } x)))) = x \cdot 2^n\)

- **Round-trip properties**
 - Double reverse: \((\text{reverse} (\text{reverse } xs)) = xs\)
 - Division check: \(y \cdot (\text{div } x \ y) + (\text{mod } x \ y) = x\)
 - Multiplex, demultiplex: \((\text{mux} (\text{dmx } xs)) = xs, (\text{dmx} (\text{mux } xs \ ys)) = (xs \ ys)\)
 - Concatenate prefix/suffix: \((\text{append} (\text{prefix } n \ xs) \ (\text{suffix } n \ xs)) = xs\)
 - Linear encryption: \((\text{decrypt} (\text{encrypt } msg)) = msg\)
 - Convert number to numeral and back: \((\text{numb} (\text{bits } x)) = x\)

Property Counts

From SE lectures

26
23
22 others
Linear Encryption
add adjacent codes, mod code-space size

(defun encrypt-pair (m x x-nxt)
 (mod (+ x x-nxt) m))
(defun decrypt-pair (m x-encrypted y-decrypted)
 (mod (- x-encrypted y-decrypted) m))
(defun encrypt (m xs)
 (if (consp (cdr xs))
 (cons (encrypt-pair m (car xs) (cadr xs))
 (encrypt m (cdr xs)))
 (list (encrypt-pair m (car xs) (1- m)))))
(defun decrypt (m ys)
 (if (consp (cdr ys))
 (let* ((decrypted-cdr (decrypt m (cdr ys))))
 (cons (decrypt-pair m (car ys) (car decrypted-cdr))
 decrypted-cdr))
 (list (decrypt-pair m (car ys) (1- m)))))

Derived round-trip property: decrypt encrypted message

(defun property decrypt-inverts-encrypt
 (m :value (+ (random natural) 2)
 n :value (random natural)
 xs :value (random-list-of (random-between 0 (- m 1)) :size (+ n 1))
 :where (and (natp m) (> m 1)
 (consp xs) (true-listp xs) (code-listp m xs))
 (equal (decrypt m (encrypt m xs)) xs))
Accommodations for ACL2

ACL2 logic requires all functions to be total
- Definition admitted to ACL2 logic only after proving termination
- Functions must terminate for all inputs

An implication for programming

(defun encrypt (m xs)
 (if (consp (cdr xs))
 (cons (encrypt-pair m (car xs) (cadr xs))
 (encrypt m (cdr xs)))
 (list (encrypt-pair m (car xs) (1- m))))
)

- Conventional definition of encrypt use (if (null (cdr xs)) ...)
- The Boolean (null xs) can fail to trigger termination for some inputs
 ✓ For example, if xs is an atom other than nil
 ✓ Using (consp xs), or (atom xs) or (endp xs), avoids this problem
 ✓ Programmer expects all inputs to be true lists (nil-terminated), but ACL2 requires totality, so the definition must cover all cases

Other tricks (among many)

- Count down on naturals and use zp or posp for termination test
 ✓ Suggests induction scheme that works (counting up is trickier)
- Lemma needed when “rest” is not used for list-shortening recursions
Binary Numerals

(defun numb (x) ; number denoted by binary numeral x
 (if (consp x)
 (if (= (first x) 1)
 (+ 1 (* 2 (numb (rest x))))
 (* 2 (numb (rest x))))
 0))

(defun bits (n) ; binary numeral for n
 (if (zp n)
 nil ; bits0
 (cons (mod n 2) ; bits1
 (bits (floor n 2)))))

[diagram]

Derived round-trip property: number to numeral and back

(defun property numb-inverts-bits
 (n :value (random-natural))
 (= (numb (bits n)) n))
Arithmetic on Binary Numerals

(defun add-1 (x)
 (if (consp x)
 (if (= (first x) 1)
 (cons 0 (add-1 (rest x))) ; add11
 (cons 1 (rest x))) ; add10
 (list 1)))

(defun add-c (c x)
 (if (= c 1)
 (add-1 x) ; addc1
 x)) ; addc0

(defun add (c0 x y)
 (if (and (consp x) (consp y))
 (let* ((x0 (first x))
 (y0 (first y))
 (a (full-adder c0 x0 y0))
 (s0 (first a))
 (c1 (second a))
 (cons s0 (add c1 (rest x) (rest y)))))) ; addxy
 (if (consp x)
 (add-c c0 x) ; addx0
 (add-c c0 y))))) ; add0y

(defthm add-ok
 (= (numb (add c x y))
 (+ (numb (list c)) (numb x) (numb y))))
Multiplication, Too

(defun my1 (x y) ; x,y: binary numerals, y non-empty
 (if (consp x)
 (let* ((m (my1 (rest x) y))
 (if (= (first x) 1)
 (cons (first y) (add 0 (rest y) m)) ; mul1xy
 (cons 0 m))))) ; mul0xy
 nil)); mul0y

(defun mul (x y)
 (if (consp y)
 (my1 x y) ; mulxy
 nil)); mulx0

; Derived property: multiply numerals or multiply numbers

(defun mul-ok
 (= (numb (mul x y))
 (* (numb x) (numb y))))
Another Accommodation for Proofs

- **Avoid hypotheses in theorems when possible**
 - “Normal” representation of binary numeral would be list of 0s and 1s
 - But, theorems would be implications with “list of 0s and 1s” hypothesis

- **Avoiding the “list of 0s and 1s” hypothesis**
 - Use 1 for 1-bit and anything else for 0 bit
 - Use consp (or atom or endp) to avoid requiring true lists
 - Most of the time, inputs will be lists of 0s and 1s, but mechanized logic is not constrained to those particular representations of numerals

  ```lisp
  (defun numb (x) ; number denoted by binary numeral x
    (if (consp x)
      (if (= (first x) 1)
        (+ 1 (* 2 (numb (rest x))))
        (* 2 (numb (rest x))))
      0))
  ```

Note (Marco):
1. consp
2. 1, not 1 instead of 0, 1
3. Use dblchk until bugs seem to be fixed
4. Reading the acl2 report panel
Nested Recursion vs Tail Recursion

\[f_0 = 0 \]
\[f_1 = 1 \]
\[f_{n+2} = f_{n+1} + f_n \]

algebraic equations

\[
\begin{align*}
(fib-tail \ n \ a \ b) &= \begin{cases}
0 & \text{if } (zp \ n) \\
\text{a} & \text{if } (= \ n \ 1) \\
\text{b} & \text{if } (= \ n \ 2) \\
\text{}(fib-tail \ (- \ n \ 1) \ b \ (+ \ a \ b)) \end{cases}
\end{align*}
\]

(defun Fibonacci (n)
 (if (zp n)
 0
 (if (= n 1)
 1
 (+ (Fibonacci (- n 1))
 (Fibonacci (- n 2))))))

transcribed to ACL2 syntax

infeasible computation

(defun Fibonacci-fast (n)
 (fib-tail n 0 1))

O(n) computation

derived property

(defthm Fibonacci=Fibonacci-fast
 (implies (natp n)
 (= (Fibonacci n)
 (Fibonacci-fast n))))

lemmas for mechanized proof

(defthm fib-tail-Fibonacci-recurrence-0
 (= (fib-tail 0 a b) a))
(defthm fib-tail-Fibonacci-recurrence-1
 (= (fib-tail 1 a b) b))
(defthm fib-tail-Fibonacci-recurrence
 (implies (and (natp n) (>= n 2))
 (= (fib-tail n a b)
 (+ (fib-tail (- n 1) a b)
 (fib-tail (- n 2) a b))))
ACL2 Sometimes Needs Hints

- Axiomatic properties of suffix function

  ```lisp
  (defun suffix (n xs)
    (if (posp n)
        (suffix (- n 1) (rest xs)) ; sfx1
        xs)) ; sfx0
  ```

- Derived property: suffix reduces length

  ```lisp
  (defproperty suffix-reduces-length
    (xs :value (random-list-of (random-symbol))
     n :value (random-natural)
     :where (and (consp xs) (posp n)))
     (< (len (suffix n xs)) (len xs))
    :hints ("Goal" :induct (len xs)))
  ```

- Theorem that Dracula sends to ACL2 logic

  ```lisp
  (defthm suffix-reduces-length
    (implies (and (consp xs) (posp n))
     (< (len (suffix n xs)) (len xs))
    :hints ("Goal" :induct (len xs)))
  ```

suggests induction strategy
Future Work

- **Have:** hundreds of defined properties
 - Ten years, three courses
 - Lectures
 - Homework projects
 - Exams

- **Goal:** web accessible archive
 - Notes and Dracula definitions for all properties
 - Lemmas and hints for ACL2 mechanized proof

- **Target date:** May 2012
The End