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Abstract We need to find innovative ways of expanding the activity repertoire of robots,
including having robots learn their own activities. Here, we explore the suitabil-
ity of well-known methods for learning with multiple robots and introduce a new
method: memetic learning. Memetic learning combines individual experience
methods with population-based methods in a novel way that allows for expand-
ing or changing candidate solutions in non-random ways, based on evaluations
of strengths and weaknesses of current solutions. This results in an intelligent
search of the feature-space and, therefore, requires fewer learning trials. This is
particularly important if online learning is to be achieved.
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1. Introduction

As multi-robot systems become more widespread, we need to find innova-
tive ways of expanding the activity repertoire of these robots, including having
the robots learn their own activities. Possible learning methods include those
based on the experiences of individual robots, population-based methods that
use analogies to evolution, and methods that combine these concepts.

The suitability of these methods for learning in robotic systems depends
critically on the amount of time that the robots must spend gathering experi-
ences in order for learning to take place. In both real robots and high-fidelity
simulations, this factor will almost surely be the limiting factor in learning. It
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makes sense, then, to explore learning methods that attempt to make the most
of any experience gained.

For this reason, we introduce a new learning paradigm for robotic systems:
memetic learning. Memetic learning combines individual experience meth-
ods with population-based methods in a novel way that allows for expanding
or changing candidate solutions in non-random ways, based on evaluations of
strengths and weaknesses of current solutions. This results in an intelligent
search of the feature-space and, therefore, requires fewer learning trials. Not
only can activities be learned memetically in a multi-robot environment but,
unlike many learning methods (such as individual reinforcement learning), me-
metic learning benefits from the use of multiple robots.

2. Memetic Learning

Memetic learning is based on imitation—people learn, not only from their
own direct experiences with the world, but also by following patterns, models,
or examples they have observed. This imitation is an active process by which
people acquire the components of cultural knowledge. This process provides
a rich metaphor on which several related machine-learning methods can be
based. These methods will be known collectively as memetic learning.

2.1 Related Work

Several related approaches, all falling under the heading of evolutionary
computation, have been proposed and are the subjects of much active research
in machine learning (B-ack et al., 1997; Yao, 1999). These approaches are
based loosely on concepts borrowed from biological evolution. Of these ap-
proaches, the best known is genetic algorithms. In genetic algorithms, chro-
mosomes (sequences of genes) are represented by sequences of discrete values,
typically binary strings. The possible values for each gene at each locus (posi-
tion) on a chromosome are the alleles.

Genetic algorithms start with an initial (randomly-determined) population
of proposed solutions to some problem and use analogs of the gene-level op-
erations of crossover and mutation to add new candidate solutions to the pop-
ulation. A selection method preserves some solutions and removes others,
according to some fitness criteria. Genetic algorithms, therefore, may serve
as parallel, heuristic search procedures (Holland, 1962). The application of
evolutionary computation methods to learning action policies for robotics and
similar applications has been reviewed recently (Moriarty et al., 1999).

While genetic algorithms and other evolutionary computation approaches
are able to find solutions to difficult machine-learning problems, they are in-
efficient in their search. This is because, like biological evolution, standard
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evolutionary computation approaches are blind. That is, their methods for gen-
erating new candidate solutions are random.1

Non-random approaches to improving candidate solutions have been pro-
posed, such as reinforcement learning (Kaelbling et al., 1996; Sutton and Barto,
1998).2 In reinforcement-learning methods, an initially random candidate so-
lution is created and tested. If it performs well, it is rewarded; if not, it is pun-
ished. Based on its performance, the candidate solution is modified and then
re-tested. Unfortunately, working from a single individual candidate solution
makes it likely that large parts of the feature space may not be explored unless
the modifications are largely random, despite the rewards and punishments re-
ceived. This is the problem of exploitation vs. exploration in reinforcement
learning—if you exploit what you know to get the most reward of the known
possibilities, you may be failing to find better possibilities that could be located
through exploration.

To overcome the problems with blindness in evolutionary computation ap-
proaches and the lack of feature space coverage found in directed approaches,
combinations of these approaches have been proposed. This effort has re-
sulted in evolutionary reinforcement learning and learning classifier systems
(Lanzi et al., 2000). Here individuals within the population learn individu-
ally, then share their knowledge through random combination methods such as
crossover.

Moscato (1989) proposed an approach he called memetic algorithms. Me-
metic algorithms are evolutionary computation methods. However, whereas
other evolutionary computation approaches are inspired by biological evolu-
tion and its combination of replicators known as genes, memetic algorithms
are inspired instead by the evolution of cultural knowledge and are named for
the cultural replicators that Dawkins proposed and named memes (Dawkins,
1976).

Moscato recognized that there are at least two great differences between
biological evolution and cultural evolution: (1) individuals cannot choose their
own genes whereas memes can be acquired intentionally, and (2) individuals
may modify and improve upon the memes that they acquire, whereas they
cannot do so with their genes.

Despite recognizing both of these differences, Moscato only incorporated
modification of acquired memes into his memetic algorithms; meme selec-
tion was left as future work. Subsequent researchers have followed suit and
memetic algorithms have largely become synonymous with the combination
of local search heuristics with genetic algorithms using crossover. They are,
therefore, sometimes called hybrid genetic algorithms or genetic local search
methods and are closely related to evolutionary reinforcement learning and
learning classifier systems.
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2.2 Proposed Approach

This paper introduces the idea of memetic learning. Memetic learning is
directly inspired by Dawkins notion of the acquisition of memes through imi-
tation. What is needed for intelligent imitation is a method to evaluate partial
solutions—either individual genes or groups of genes in combination. This
evaluation is what is provided by memetic learning and is what differenti-
ates memetic learning approaches from other evolutionary computation ap-
proaches.

For robotic tasks, the genes may represent actions to be taken given the state
of the system. These state-action pairs can be evaluated using reinforcement
learning (Kaelbling et al., 1996; Sutton and Barto, 1998). Memetic learning
applied to such tasks, therefore, can be seen to combine the best of both re-
inforcement learning and evolutionary computation. Note that this is different
from the way in which these methods are combined in evolutionary reinforce-
ment learning (or learning classifier systems) in which the learning is done by
the individual based on its own experience, whereas with memetic learning, the
individual may look at the reward received by other individuals for their ac-
tions in the part of the search space in question, to determine which to imitate.
Here we introduce one way of doing this, which we call splicing.

2.2.1 Imitation by Splicing. Splicing involves taking partial solutions
from two or more individuals and combining them into a single individual.
This operation is similar to crossover in standard genetic algorithms and other
evolutionary computation methods but with a great advantage: The replicator
sequence is chosen based on its estimated positive contribution to the donor
individual rather than selected randomly. This means that it is likely to have a
similar positive contribution to the receiving individual. This also means an in-
dividual may receive replicator sequences from more than two donors at once.
(While this could be done with standard genetic algorithms, the random nature
of the selection process in a standard genetic algorithm makes it decreasingly
likely that the receiving individual will acquire beneficial components from a
donor as the number of donors increases.)

2.2.2 Memetic Learning Algorithms. Memetic learning algorithms fit
Moscato’s definition of memetic algorithms. However, we use the name me-
metic learning algorithms to stress the use of non-random methods for the gen-
eration of new solutions, rather than crossover which is so widely associated
with previous memetic algorithms.

Memetic learning algorithms are related to genetic algorithms in the form
that solutions may take. As with standard genetic algorithms, one defines pos-
sible solutions as sequences of discrete values, typically binary strings. For
genetic algorithms, each entry in the sequence is considered a gene, whereas
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with memetic learning algorithms, each entry in the sequence is a meme. The
possible values for that entry are the alleles.

Learning in memetic learning algorithms proceeds as follows: A population
of individuals with random alleles for each meme is constructed and tested
on the task. Individuals observe their own overall fitness values and those of
the other individuals in the population. Further they observe the partial fitness
values of the partial candidate solutions that they are able to identify, both for
themselves and for the others. They then replace their memes for those portions
of the solution for which they have low fitness values, using imitation.

3. Experiments using Trailer-Backing

As our first test of memetic learning algorithms, we use the task of trailer-
backing. The object of this task is for the robotic agent to learn to back a
truck with a hinged trailer to a stationary goal, as shown in Figure 1. The
agent fails if the hitch angle (the angle between the spines of the truck and
the trailer) exceeds 90◦ in either direction—known as jackknifing—or the goal
angle (the angle between the spine of the trailer and the goal) exceeds 90◦ in
either direction. The agent succeeds if the rear of the trailer reaches the goal.
The agent controls the angle of the steering wheels at the front of the truck.

Goal

Wheel AngleGoal Angle

Hitch Angle

Figure 1 Our version of the
trailer-backing task.

This is a difficult task in part because the agent is provided with very little
information from which to learn. It is given current state information on every
discrete time-step but the only feedback given is a binary success or failure
signal that may come after dozens or hundreds of time steps. This provides
a temporal credit assignment problem. Moreover, our version of the task in-
troduces severe perceptual aliasing of the kind found in many robot learning
tasks. Rather than providing the agent with knowledge of the position and ori-
entation of the truck and trailer in global coordinates, as other authors have
done (e.g., Koza, 1992), we provide the agent with only information that could
be easily sensed by a robotic truck-trailer system. In particular, we give the
agent only the goal and hitch angles described above. Significantly missing is
any information on distance to the goal. This means that the same decision for
the same input is unlikely to produce the same next input.
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3.1 Learning Algorithms

We compare three basic types of learning algorithms. To exemplify methods
that learn from individual experience we use reinforcement learning with eligi-
bility traces. To exemplify evolutionary methods, we use a genetic algorithm.
Finally, to exemplify combined methods, we implement memetic learning us-
ing splicing.

For all of these methods, we use the same representation for the candidate
solutions. The two-dimensional input space is partitioned into eight equal-
sized regions in each dimension, for a total of 64 discrete states. For each
state, the system learns to turn the wheels either 30◦ left or right. This repre-
sentation gives us the ability to create a simple policy table that determines the
choice to make when each state is entered. It also magnifies the problem of
perceptual aliasing to the point that the states and actions are too gross for the
system to learn a policy that always succeeds. This means that some failures
are inevitable and the system must be capable of learning despite this fact.

For all methods, the truck-trailer rig is started at a fixed distance from the
goal, at a goal angle chosen randomly with a uniform distribution between
−15◦ and 15◦, and at a hitch angle randomly with a uniform distribution be-
tween −45◦ and 45◦. It backs until it succeeds or fails. This is known as a
trial.

3.1.1 Reinforcement Learning with Eligibility Traces. The concept
of the eligibility trace in brain function was presented by Klopf (1974). Eli-
gibility traces have since been used in several reinforcement learning systems
(Singh and Sutton, 1996). Eligibility traces allow for learning when perfor-
mance is temporally dependent on responses and critical evaluations are avail-
able.

The policy table is initialized by randomly choosing left or right as the action
for each state. Corresponding to each table entry is a score s (0 ≤ s ≤ 1) that
reflects our confidence in that action. Initially, these scores are set to zero.
Learning then takes place over a series of trials.

The scores are changed on failure or success, based on their eligibility for
adaptation e (0 ≤ e ≤ 1). At the start of each trial, all policy table scores have
an eligibility value of zero. When a state is entered, the corresponding score
becomes eligible for change according to

enew
=















eold
+ I if eold

+ I ≤ 1,

1 otherwise.
(1)

where e is the eligibility and I is the initial additional eligibility just after fir-
ing. This provides a saturating trace (Hougen, 1998), rather than the more
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common replacing or accumulating traces (Singh and Sutton, 1996). In these
experiments I is 0.1.

At each time step, the eligibility of each score decays, regardless of whether
the corresponding state was encountered on that time step, according to

e(t + 1) = δe(t) (2)

where δ is the rate of eligibility decay (0 ≤ δ ≤ 1). In these experiments δ is
0.99041915. (I.e., it takes 72 time steps for an eligibility value to fall to half of
its current value. This value is based on the typical length of time it takes the
robot to complete a trial.)

When success or failure occurs, it is likely that more recent actions are more
responsible than earlier actions and are rewarded or punished to a greater ex-
tent. When a success or failure signal is received, the scores of all policy table
entries are updated according to

snew
= sold

+ e f (3)

where s is the score, and f is the feedback (+1 for success, −1 for failure). If s
becomes negative, the policy decision for the corresponding state is reversed,
and s is set to |s|.

This reinforcement learning method is quite effective at learning a policy
for this task. On average, in fewer than 500 trials, the robot learns a policy that
succeeds well over 90% of the time (see Figure 2). This is a tough standard
against which to compare other systems.
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Figure 2 Success rate,
shown every ten trials, for
a robot learning to back a
trailer using eligibility traces.
Results are averaged over 100
runs.

3.1.2 Genetic Algorithm. For the genetic algorithm (GA), each policy
table is encoded as a one-dimensional chromosome, where each allele at each
locus is a left or right action decision. The population, then, is a collection of
policy tables. With a population size set at 50, we use proportional probability
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selection for choosing individuals for reproduction, with 10% copied directly
to the next generation (elites) and 90% generated as two-offspring pairs using
two parents and two-point crossover followed by mutation with a probability
of 0.2% at each locus. For fitness, we have the truck-trailer rig attempt trials
from random starting configurations, as described above (Section 3.1).

One might expect the fitness function for an evolutionary algorithm applied
to a task such as this to involve several trials, the results of which are averaged
together (Moriarty et al., 1999). Indeed, this was done for an evolutionary pro-
gramming approach to the trailer-backing task (Koza, 1992). Unfortunately,
the resulting large number of trials argues for offline learning, rather than on-
line (Moriarty et al., 1999), whereas we are more interested in online learning.
Indeed, in the evolutionary programming research, hundreds of thousands of
trials were employed (Koza, 1992), making online learning highly impractical.

As our trials provide only minimal feedback (a binary success or failure sig-
nal), we have a choice between using many trials to get an accurate evaluation
of each policy’s fitness or using a rougher fitness measure. We compare fitness
measures involving 10, 5, and 1 trial(s) per evaluation. For each trial, a success
adds 1 to an individual’s fitness value, while a failure adds 0. Because we use
proportional probability selection for choosing individuals for reproduction,
yet do not want to eliminate any chance that an individual without successes
is selected for reproduction (to avoid genetic bottlenecks), we augment the
fitness of each individual by 0.25 before performing proportional probability
selection.

As expected, the fitness measures involving more trials per evaluation pro-
duce more accurate fitness estimates and require fewer generations to achieve
the same level of success, as shown in Figure 3. However, one should note
not only the relatively minor differences in performance of the GA when us-
ing 10 and 5 trial fitness functions but also the surprisingly good performance
of the GA when using the 1 trial version. This latter result means that, if we
consider the more important criterion for online learning—trials, rather than
generations—the 1 trial fitness function performs significantly better than ei-
ther of the more thorough variations, as shown in Figure 4. For this reason,
we will use the 1 trial fitness function for comparison with memetic learning
algorithms.

3.1.3 Memetic Learning Algorithms. For memetic learning algorithms,
we use a simple gene-splicing method. As with the GA, each policy table is
encoded as a one-dimensional chromosome, where each allele at each locus is
a left or right action decision. The population, again, is a collection of policy
tables and the population size is set again at 50. However, rather than using
a selection mechanism to generate new individuals for successive generations,
we retain all individuals—generations are marked by changes learned by indi-
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Figure 3 Success rate,
shown every generation, for
robots learning to back a
trailer using genetic algo-
rithms with three different
fitness functions. _ is 10
trials per fitness evaluation;
� is 5; � is 1. Results are
averaged over 100 runs.
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Figure 4 Success rate,
shown every ten trials per
robot with a population size
of 50 robots, for robots
learning to back a trailer
using genetic algorithms
with three different fitness
functions. _ is 10 trials per
fitness evaluation; � is 5; � is
1. Results are averaged over
100 runs.

viduals. Each individual in the population is given a single trial. Based on that
trial, individuals learn in up to two ways. First, all individuals learn by direct
experience. Second, if an individual fails, it learns by imitation.

Learning by direct experience. As with reinforcement learning, each pol-
icy table entry has associated with it a score that reflects our confidence in that
action and each score has associated with it an eligibility value. The score and
eligibility values are updated during and after each trial using Equations 1, 2,
and 3.

Learning by imitation. If an individual fails, it also learns by imitation by
considering each of its loci separately. For each locus, the probability that the
current allele is retained is equal to max(s, 0). For alleles that are not retained,
a replacement allele is chosen for that locus using proportional probability se-
lection based on the scores of all of the alleles for all individuals for that locus.
Note that it is possible for the replacement allele to be the same as the replaced
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allele. In fact, with only two alleles for a locus, as in the present study, this is
quite likely.

Because we do not want to completely eliminate any chance that an allele
with a zero score is selected for imitation, we augment each allele score by
0.05 before performing our proportional probability selection. This is similar
to what we do in the genetic algorithm at the level of the individual, rather than
the level of the allele.

3.1.4 Comparisons. As discussed above (Section 3.1.2), there is more
than one way to evaluate the learning rate of an algorithm, and trials is a more
important measure than generations when we are interested in online learning.
Even considering trials, however, we can still use various measures. One mea-
sure is total trials. This measure would be appropriate when a single robot is
available on which learning is to take place. A second measure is trials per
robot. This measure is more appropriate when multiple robots are available.

As shown in Figure 5, the total trials measure greatly favors reinforcement
learning over both genetic algorithms and memetic learning algorithms. This
is not surprising. Both genetic algorithms and memetic learning algorithms
are intended as parallel search methods but counting total trials is essentially
equivalent to serializing their implementation, which greatly slows their per-
formance. Reinforcement learning, on the other hand is a serial search method
by design.
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Figure 5 Success rate for
robots learning to back a
trailer using three different
learning methods. • is el-
igibility traces (shown every
10 trials); � is genetic algo-
rithm (shown every 50 trials,
i.e., every generation); N is
memetic learning algorithms
(shown every 50 trials, i.e.,
every generation). Results are
averaged over 100 runs.

As shown in Figure 6, with 50 robots available for use, measuring trials per
robot greatly favors both genetic algorithms and memetic learning algorithms
over reinforcement learning. This, likewise, is not surprising, following the
inverse of the logic presented above. Having multiple robots does not speed up
reinforcement learning, because reinforcement learning takes place indepen-
dently on each robot. Contrapositively, having multiple robots does speed the
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learning in both genetic algorithms and memetic learning algorithms, because
it makes the theoretically parallel search of these methods parallel in practice.
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Figure 6 Success rate for
robots learning to back a
trailer using three different
learning methods. • is el-
igibility traces (shown every
10 trials); � is genetic al-
gorithm (shown every 10 tri-
als per robot, i.e., 10 genera-
tions); N is memetic learning
algorithms (shown every 10
trials per robot, i.e., 10 gener-
ations). Results are averaged
over 100 runs.

Figures 5 and 6 also show that, for this task, memetic learning algorithms
begin learning more slowly than genetic algorithms (during approximately the
first 30 trials per robot) but quickly surpass them and retain better performance
for a substantial period thereafter (well in excess of 300 trials per robot). The
fact that memetic learning algorithms quickly surpass genetic algorithms is
expected, given the theory behind both methods. The slower memetic learning
during the start-up period, however, is unexpected and will be the subject of
future research.

4. Discussion and Future Work

We consider learning as a function of trials because this is standard in the
robot learning community. However, note that both total trials and trials per
robot are imperfect measures of learning time, whether one robot is available
for learning or multiple robots are available. This is because not all trials may
be of the same length. A difference in trial length will tend to favor non-
generational learning methods because with these methods a robot can start its
next trial as soon as it finishes its current trial whereas with a generation-based
method all robots must wait for the slowest robot in the generation to complete
before calculating their next set of policies and starting their next trials.

However, we can use population-based methods without generations—a
robot may determine a new policy asynchronously based on the most recent
completed trial of all robots. Comparisons of the given population-based meth-
ods to non-generational variants of them remains as future work.

In fact, much remains as future work. This paper should be seen as merely
introducing a concept, rather than laying out a complete methodology. One im-
portant next step is to develop and experiment with more sophisticated splicing



12

methods. Another important step is to combine splicing with other imitation
methods such as generalization, which we have used previously to speed learn-
ing (e.g., Hougen et al., 2002). Additional future work will look at different
meme encodings, just as different evolutionary computation methods use dif-
ferent gene encodings.

Notes

1. This is not to suggest that the overall learning mechanisms in evolutionary computation methods
are random. The selection of individuals for reproduction is guided by fitness evaluations. However, the
reproduction itself, whether through crossover or mutation, is done at random.

2. We are using the term reinforcement learning to denote methods that search either policy space or
value-function space. However, we are not including evolutionary methods under this label, although other
authors (e.g., Moriarty 1999) have done so.
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