
Project 1
Computer Science 2334

Spring 2017
This project is individual work. Each student must complete this assignment independently.

User Request:

“Create a simple newspaper story data system.”

Milestones:

1. Use program arguments to specify a file name. 10 points

2. Use simple File I/O to read a file. 10 points

3. Create an abstract data type (ADT) to store information on a single newspaper story. 15 points

4. Create an ADT that abstracts the use of an array (or list) of newspaper stories. 15 points

5. Implement a program that allows the user to search the list of newspaper stories as
described below.

20 points

► Develop and use a proper design. 15 points

► Use proper documentation and formatting. 15 points

Description:

For this project, you will put together several techniques and concepts you have learned in CS 1323 (or
from a similar background) and some new techniques to make an application that searches a collection
of data on newspaper stories. This application will be called Nooz and will allow users to enter the
names of newsmakers (that is, the people the newspaper stories are about) and see basic data (such as
publication date) of each relevant newspaper story according to the data in the database.

One of the positive aspects of this project is that it will use an arbitrary amount of data. Nooz must be
capable of handling data on hundreds or thousands of newspaper stories. To the surprise of no one, the
best approach to this problem is to decompose the problem into separate classes that can be gradually
built up. Note that much of the code you write for this program could be reused in more complex
applications, which, by the way, is what we will do in our projects this semester.

Operational Issues:

Data file and format:
Nooz will read the data file (a text file) as specified by a file name. The file name will be given as a
program argument. (See Implementation Issues below or refer back to your first lab for information on
how to read program arguments). The first line of the file contains header information. Each line of the
file, except the first, contains information on a single newspaper story. Each data line contains the date
the story was published, followed by the newspaper in which the story was published, followed by a
count of words in the story, followed by a topic for the story, followed by the lead newsmaker in the
story, followed by the second lead newsmaker in the story. These data fields are all separated from one
another by commas and each newsmaker name is surrounded by quotation marks. The date is given as a
single number, the first four digits of which represent the year, the second two the month, and the final
two the day. The newspaper is encoded as a single number, with the following possible values.

CS 2334 Spring 2017 1

Code Newpaper
1 New York Times
2 Washington Post
3 Wall Street Journal
4 USA Today
13 Los Angeles Times
117 Denver Post
118 Houston Chronicle
119 Orlando Sentinel
120 Traverse City Record
121 Daily Herald (Everett, WA)
122 Eagle Tribune (MA)

The topic of the story is likewise encoded as a single number, with the following possible values.

Code Topic
1 Government Agencies/Legislatures
2 Campaigns/Elections/Politics
3 Defense/Military (Domestic)
4 Court/Legal System
5 Crime
6 Domestic Terrorism
7 Business
8 Economy/Economics
9 Environment
10 Development/Sprawl
11 Transportation
12 Education
13 Religion
14 Health/Medicine
15 Science and Technology
16 Race/Gender/Gay Issues
17 Immigration
18 Additional Domestic Affairs
19 Disasters/Accidents
20 Celebrity/Entertainment
21 Lifestyle
22 Sports
23 Media
24 U.S. Miscellaneous
25 U.S. Foreign Affairs
26 Foreign (non-U.S.)

For example:

20120102,1,1374,2,"Santorum, Rick","Romney, Mitt"

This indicates that the story was published on January 2, 2012 in the New York Times, that it was 1374
words long, that the topic was Campaigns/Elections/Politics and that lead newsmakers of the story were
Rick Santorum and Mitt Romney. Note that besides the name of an individual, a newsmaker may be an

CS 2334 Spring 2017 2

organization such as "Obama Administration" or, if there are not two newsmakers for a story, either or
both may be replaced by the numeric code 99. For example:

20120403,1,2973,1,99,"Obama Administration"

This indicates that the story was published April 3, 2012 in the New York Times, that it was 2973 words
long, that the topic was Government Agencies/Legislatures and that the one lead newsmaker of the story
was the Obama administration.

You will need to store the data on each newspaper story as an object and the collection of all newspaper
stories will be stored as a list of these objects. In addition, you may create and use objects of other types
to give your system a logical design and the functionality required by the program specifications.

User interaction with Nooz:
Once the list of newspaper stories has been read into Nooz and stored, Nooz will use a JOptionPane to
display to the user a dialog box requesting the name of a newsmaker.

When the user enters a newsmaker name into the dialog, Nooz will check to see if the name is associated
with any newspaper story in the database. If so, Nooz will use another dialog to display to the user the
data of all of the newspaper stories in the database associated with that name. In particular, Nooz will
show the following information for each associated story: Date published (in the format month day,
year, where month is spelled out as a word), newspaper name (in words, not the numeric code), word
count, and topic, all separated by semicolons. For example, if the user entered the name “Santorum,
Rick” in the input dialog, one line of the response, corresponding to the data above would be as follows:

January 2, 2012; New York Times; 1374 words; Campaigns/Elections/Politics

One such line will be displayed for each individual newspaper story found. After the lines for all of the
individual newspaper stories are displayed, Nooz will also give one summary line that lists the number
of stories found, the number of different newspapers in which these stories were published, the total
number of words in these articles, and the number of different topics found.

If the newsmaker name is not associated with any newspaper story in the list, Nooz will use a dialog to
inform the user of that fact.

Note that the user may also leave the newsmaker name field empty on the input dialog. If the user does
so, Nooz should find all stories for which no newsmaker is given (i.e., those for which both newsmaker
data fields in the file are the special code of 99) and print individual lines for those stories as well as a
final summary line.

After checking whether the name is associated with any story in the database and displaying information
to the user one way or the other, Nooz will again use a dialog to request another newsmaker name. It
will continue in this loop until the user clicks on cancel, at which time Nooz should gracefully exit.

Implementation Issues:

There are two Java elements in this project that may be new to some students: reading from a file and (if
you skipped Lab 1) program arguments. These Java features are summarized below.

Reading from a file:

We will discuss File I/O in more depth later in the class; this project is just designed to give you a brief
introduction to the technique. Reading files is accomplished in Java using a collection of classes in the
java.io package. To use the classes you must import the following package:

import java.io.IOException;

CS 2334 Spring 2017 3

The first action is to open the file. This associates a variable with the name of the file sitting on the disk.

String fileName = "StoryData.csv";
FileReader fr = new FileReader(fileName);

(Note that the lines given above will work if your data file is called “StoryData.csv.” However, you
should not “hardcode” this file name into your source code. Instead, you should get the name of the file
from a program argument when your program is run. You will, therefore, need to modify the code
provided above to use the variable in which you have stored the program argument.)

Next the FileReader is wrapped with a BufferedReader. A BufferedReader is more efficient than a
FileReader for working with groups of characters (as opposed to individual characters). Another
advantage of using a BufferedReader is that there is a command to read an entire line of the file, instead
of a single character at a time. This feature comes in particularly handy for this project.

BufferedReader br = new BufferedReader(fr);

The BufferedReader can now read in Strings.

String nextline;
nextline = br.readLine();

Look at the Java API listing for BufferedReader and find out what readLine() returns when it reaches
the end of the file (stream). Have your code process each line, putting the data into objects and variables
while also looking for this special return value. When you are finished with the BufferedReader, the file
should be closed. This informs the operating system that you’re finished using the file.

br.close();

Closing the BufferedReader also closes the FileReader.

Any method which performs I/O will have to throw or catch an IOException. If it is not caught, then it
must be passed to the the calling method. The syntax is given below:

public void myMethod(int argument) throws IOException {
 //method body here
}

Program Arguments:
Sometimes it is handy to be able to give a program some input when it first starts executing. Program
arguments can fulfill this need. Program arguments in Eclipse are equivalent to MS-DOS, Mac, or Unix
command line arguments. Program arguments are handled in Java using a String array that is
traditionally called args (the name is actually irrelevant). See the “Lab 2” slides (this year provided for
Lab 1) for how to supply program arguments in Eclipse.

The program below will print out the program arguments.

public static void main(String[] args) {
 System.out.println(args.length + " program arguments:");
 for (int i=0; i< args.length; i++)
 System.out.println("args[" + i + "] = " + args[i]);
}

(Note that your program should not print the arguments but, instead, use the appropriate argument as the
filename from which to read the data.)

CS 2334 Spring 2017 4

Milestones:

A milestone is a “significant point in development.” Milestones serve as guides in the development of
your project. Listed below are a set of milestones for this project along with a brief description of each.

Milestone 1. Use program arguments to specify a file name.
The name of the file that stores the list of data on newspaper stories will be passed to the program using
program arguments as discussed above. Type in the sample program given in the section on program
arguments and make sure that you understand how the program arguments you provide affect the
String[] args parameter that is passed into the main method of the program. Then, write a main
method for your program that reads in the name of the data file from the program arguments.

Milestone 2. Use simple File I/O to read a file.
Before you can allow the user to search the list of newspaper stories, you must first be able to read a text
file. Examine the section above on reading from a file. A good start to the program is to be able to read
in the name of a file from the program arguments, read each line from the file, one at a time, and print
each line to the console using System.out.println(). Later, you will want to remove the code that
prints out each line read in from the file, since the project requirements do not specify that the file is to
be written out to the console as it is read.

Milestone 3. Create an abstract data type (ADT) to store data on a single newspaper story.
You must create an ADT that holds the data for a single newspaper story from the data file before you
can store that data. Think about what data is associated with each newspaper story and how to most
efficiently store and retrieve the data. Also, think about any methods that may help you to manage and
compare the data by abstracting operations to be performed on individual entries in the list. Such
methods may be used by other classes.

Milestone 4. Create an ADT that abstracts the use of a list of data about newspaper stories.
You are to store the object representing each newspaper story into a list of objects. However, it is not
necessary for the portions of the program that will carry out user actions to directly operate on this list as
they would if you simply used an array of newspaper story objects. Instead, you should create a class
that abstracts and encapsulates this list and allows for the addition of new newspaper stories and also
supports other required operations on it.

This ADT will represent the collection of information associated with the program. Think about the
operations that this ADT needs to support and how it will use the ADT created for Milestone 3. At this
point, you should be able to read in the input file and create an object for each newspaper story in the
file, and store that object in the list. Note that the data file used for grading may be larger (or smaller)
than the data file provided for testing.

Milestone 5. Implement a program that allows the user to search the list of newspaper stories.
This is where the entire program starts to take on its final form and come together. Here you will create
the input and output dialogs and the menu system. Start by creating the input dialogs and the output
dialogs. Tie together the input dialogs, the ADT from Milestone 4, and the output dialogs to make this
search functional and test its functionality.

Finally, you are ready to create the main loop of the program that will take input and invoke the correct
methods to create appropriate output.

Remember that when the user clicks on “cancel,” the program must gracefully exit. This can be
accomplished by using System.exit(0).

CS 2334 Spring 2017 5

How to Complete this Project:

Preliminary Design:
 1 During the lab session and in the week following, you should determine the classes, variables, and
methods needed for this project and their relationship to one another. This will be your preliminary
design for your software.

 1.1 Be sure to look for nouns in the project description. More important nouns describing the
items of interest to the “customer” should probably be incorporated into your project as classes and
objects of those classes. Less important nouns should probably be incorporated as variables of the
classes/objects just described.

 1.2 Be sure to look for verbs in the project description. Verbs describing behaviors of the desired
objects and the systems as a whole should probably be incorporated into your project as methods.

 1.3 Also look for adjectives, if any, in the project description. Adjectives often describe features
of objects that could be incorporated into your project as interfaces to be instantiated by your classes.

 1.4 Write down these nouns, verbs, and adjectives (if any), along with their corresponding
classes/variables, methods, and interfaces (if any).

 1.5 Next, use UML class diagrams as tools to help you establish proper relationships between
your classes, variables, methods, and interfaces (if any).

 2 Once you have completed your UML design, create Java “stub code” for the classes and methods
specified in your design. Stub code is the translation of UML class diagrams into code. It will contain
code elements for class names (potentially including names for abstract classes and interfaces), variable
names, and method names; relationships between classes such as inheritance, composition, and
aggregation as appropriate; variable types; and method signatures. Stub code does not, however, contain
method bodies. Because we are using object-oriented design, in which the inner workings of one class
are largely irrelevant to the classes with which it interfaces (that is, we are using encapsulation), we do
not need to complete the implementation of the classes until after the design is completed.

 3 Add comments to your stubbed code as specified in the documentation requirements posted on the
class website. Run your commented stubbed code through Javadoc as described in the “Lab 2” slides.
This will create a set of HTML files in a directory named “docs” under your project directory.

 4 At the end of the first week, you will turn in your design documents (see Due Dates and Notes,
below), which the TAs will grade. There will be no late work accepted for the design. Please note:
You are encouraged to work with the instructor and the TAs during their office hours during the design
week to get feedback throughout the design process as needed.

Final Design and Completed Project
 5 After the design due date, you will be provided with a UML design that you must follow for your
completed project.

 6 Make corresponding changes to your stub code, including its comments.

 7 Create a new set of Javadoc files using Eclipse and inspect them to make sure they’re appropriate.

 8 Implement the design by coding each method you have defined.

 9 Test each unit as it is implemented and fix any bugs.

 10 Test the overall program and fix any bugs.

 11 Submit your project (see Due Dates and Notes, below).

CS 2334 Spring 2017 6

Due Dates and Notes:

Due dates:
Your preliminary design (list of nouns, verbs, and adjectives; UML; stub code; detailed Javadoc
documentation) is due on Friday, February 3rd. Submit the project following the steps given in the
submission instructions by 11:00pm.

The final version of the project is due on Monday, February 13th. Submit the project following the
steps given in the submission instructions by 11:00pm.

Academic honesty:
You may write your program from scratch or may start from programs for which the source code is
freely available on the web or through other sources (such as friends or student organizations). If you do
not start from scratch, you must give a complete and accurate accounting of where all of your code came
from and indicate which parts are original or changed, and which you got from which other source.
Failure to give credit where credit is due is academic fraud and will be dealt with accordingly.

ADTs:
Do not be confused by the term “abstract data type” (ADT). An ADT is not the same as an abstract
class, even though they both contain the word “abstract” in them.

A data type is simply a description of how bits in a computer are grouped and interpreted. Maybe one set
of 32 bits is interpreted as a character, whereas another set of 32 bits is interpreted as an integer, and a
set of 64 other bits is interpreted as an integer that can hold larger magnitudes, etc. With concrete data
types, implementation details matter, such as the number of bits, whether the bits are ordered from least
to most significant, etc. If you try to mix implementations, you’ll screw things up.

With an abstract data type, you hide the implementation details of the data type from the user, so that
what matters is how one interacts with instances of the type, not how they are implemented internally.
So, if you add two integers whose internal representations differ, you should still get a sensible result.

This means that if you create a class using object-oriented techniques (such as making variables private
and only accessible through methods, etc.), then even a concrete class is an abstract data type.

The reason this description doesn't just tell you to create a class to store each newspaper story’s data is
because you don’t have to use just one class. You could use two classes, or three, or more. You could
arrange them in an inheritance hierarchy (where one is a subclass of another). You could use
composition or aggregation (the types of has-a links we have discussed). All of these classes could be
concrete or some of them could be concrete and some could be abstract. You could also include
interfaces, if you saw a good reason to do so. All of these alternatives would count as creating an ADT.
However, you should also strive for simplicity; don’t make an inheritance hierarchy or a bunch of
classes or interfaces just because you can—try to match your design to the requirements.

If the term ‘ADT’ is still confusing you, think of the assignment as saying “Create something
appropriate that the computer can use to store each newspaper story’s data.” That is what it means.

Hint:
Consider using an ArrayList in conjunction with Milestone 4.

CS 2334 Spring 2017 7

