
Prog Struct & Abstr EXAM 1 Spring 2016, Page 1 of 14

Student Name: Student ID #

OU Academic Integrity Pledge
On my honor I affirm that I have neither given nor received inappropriate aid in the completion of this
exercise.

Signature: Date:

Notes Regarding this Examination

Open Book(s) You may consult any printed textbooks in your immediate possession during the course of
this examination.

Open Notes You may consult any printed notes in your immediate possession during the course of this
examination.

No Electronic Devices Permitted You may not use any electronic devices during the course of this
examination, including but not limited to calculators, computers, and cellular phones. All electronic
devices in the student’s possession must be turned off and placed out of sight (for example, in the
student’s own pocket or backpack) for the duration of the examination.

Violations Copying another’s work, or possession of electronic computing or communication devices in the
testing area, is cheating and grounds for penalties in accordance with school policies.

Prog Struct & Abstr EXAM 1 Spring 2016, Page 2 of 14

Part I. Understanding Object-Oriented Design Components & UML

1. (2 points) Which (partial) UML diagram is the most sensible?

2. (2 points) Which (partial) UML diagram is the most sensible?

3. (2 points) Which (partial) UML diagram is the most sensible?

4. (2 points) Which (partial) UML diagram is the most sensible?

Prog Struct & Abstr EXAM 1 Spring 2016, Page 3 of 14

Part II. Recognizing Object-Oriented Design Components in Code

Refer to the code listings on Pages 13 and 14 when answering the questions in this part.

5. (2 points) Which line shows an example of declaring an instance variable?

A. Listing 1, Line 1

B. Listing 1, Line 2

C. Listing 1, Line 4

D. Listing 1, Line 5

E. Listing 1, Line 8

6. (2 points) Which line shows an example of assigning a value to a variable?

A. Listing 1, Line 1

B. Listing 1, Line 2

C. Listing 1, Line 4

D. Listing 1, Line 5

E. Listing 1, Line 8

7. (2 points) Which line shows an example of instantiating an object?

A. Listing 1, Line 1

B. Listing 1, Line 2

C. Listing 1, Line 4

D. Listing 1, Line 5

E. Listing 1, Line 8

8. (2 points) Which line shows an example of defining a Class?

A. Listing 1, Line 1

B. Listing 1, Line 2

C. Listing 1, Line 4

D. Listing 1, Line 5

E. Listing 1, Line 8

9. (2 points) Which line shows an example of a parameter?

A. Listing 1, Line 1

B. Listing 1, Line 2

C. Listing 1, Line 4

D. Listing 1, Line 5

E. Listing 1, Line 8

10. (2 points) Which lines show an example of overloading?

A. Listing 1, Lines 4 and 8

B. Listing 1, Lines 14 and 18

C. Listing 2, Line 5 and Listing 3, Line 11

D. Listing 2, Lines 5 and 10

E. Listing 3, Line 4 and Listing 3, Line 7

Prog Struct & Abstr EXAM 1 Spring 2016, Page 4 of 14

11. (2 points) Which lines show an example of overriding?

A. Listing 1, Lines 4 and 8

B. Listing 1, Lines 14 and 18

C. Listing 2, Line 5 and Listing 3, Line 11

D. Listing 2, Lines 5 and 10

E. Listing 3, Line 4 and Listing 3, Line 7

12. (2 points) Which line shows an example of inheritance?

A. Listing 1, Line 2

B. Listing 2, Line 5

C. Listing 2, Line 15

D. Listing 3, Line 2

E. Listing 3, Line 4

13. (2 points) Which line shows an example of an accessor?

A. Listing 1, Line 4

B. Listing 1, Line 14

C. Listing 1, Line 18

D. Listing 2, Line 15

E. Listing 3, Line 5

14. (2 points) Which line shows an example of a mutator?

A. Listing 1, Line 4

B. Listing 1, Line 14

C. Listing 1, Line 18

D. Listing 2, Line 5

E. Listing 2, Line 10

15. (2 points) Which line shows an example of a constructor?

A. Listing 1, Line 4

B. Listing 1, Line 14

C. Listing 1, Line 18

D. Listing 2, Line 5

E. Listing 2, Line 10

16. (2 points) Which line shows an example of constructor chaining?

A. Listing 1, Line 22

B. Listing 2, Line 1

C. Listing 2, Line 15

D. Listing 3, Line 5

E. Listing 3, Line 12

Prog Struct & Abstr EXAM 1 Spring 2016, Page 5 of 14

17. (2 points) Which line shows an example of a base Class?

A. Listing 1, Line 1

B. Listing 1, Line 22

C. Listing 2, Line 1

D. Listing 3, Line 2

E. Listing 3, Line 24

18. (2 points) Which line shows an example of a derived Class?

A. Listing 1, Line 1

B. Listing 1, Line 22

C. Listing 2, Line 1

D. Listing 3, Line 2

E. Listing 3, Line 24

19. (2 points) Which line shows an example of Generics?

A. Listing 1, Line 15

B. Listing 2, Line 10

C. Listing 3, Line 2

D. Listing 3, Line 4

E. Listing 3, Line 24

20. (2 points) Which line shows an example of the Java Collections Framework?

A. Listing 1, Line 15

B. Listing 2, Line 10

C. Listing 3, Line 2

D. Listing 3, Line 4

E. Listing 3, Line 24

21. (2 points) Which of the following would show an example of subclass assignment?

A. double area = shape.getArea();

B. Point point = new Point();

C. double length = Calculator.distance (point1, point2);

D. Point point = (Point) center;

E. Shape shape = new Square(corners);

22. (2 points) Which of the following would show an example of dynamic binding?

A. double area = shape.getArea();

B. Point point = new Point();

C. double length = Calculator.distance (point1, point2);

D. Point point = (Point) center;

E. Shape shape = new Square(corners);

Prog Struct & Abstr EXAM 1 Spring 2016, Page 6 of 14

Part III. Recognizing Object-Oriented Concepts

Refer to the following description when answering the questions in this part.

Nolan, a fantasy novelist and software developer, created the FanDate Class to represent the days,
months, seasons, and years of his make-believe world. He made the fields that hold this data private but
made numerous public constructor, mutator, and accessor methods with which to interact with objects
of Class FanDate, including methods to set and get the months and seasons both by number (taking or
returning an int) and by name (taking or returning a String). For example, public int getMonth()

would return an int whereas public String getMonth() would return a String.

Later, Nolan created several subclasses of FanDate to represent the way different groups of people within
his fantasy world talk about the same dates using different numbering and naming systems for the days,
months, seasons, and years. For these Classes, he created mutator and accessor methods with the same
names as those in FanDate but with different behavior. For example, in his FanDate Class, public

String getMonth() would return “Long Sun” for the eighth month of the year, whereas in his ElfDate
subclass, public String getMonth() would return “Hei-viar” instead.

In addition, for his new subclasses he added constructors, mutators, and accessors that take or return
FanDate objects, so that he can convert from dates in one subclass to those in another subclass by
converting to and from FanDate objects. For example, his ElfDate subclass would have a method
public FanDate getDate() that would return a FanDate object that is equivalent to the ElfDate

object being queried.

23. (2 points) Having the methods public int getMonth() and public String getMonth() defined
in FanDate is an example of which?

A. encapsulation

B. overloading

C. overriding

D. inheritance

E. constructor chaining

24. (2 points) Having the methods public void setMonth(int month) and public void setMonth

(String month) defined in FanDate is an example of which?

A. encapsulation

B. overloading

C. overriding

D. inheritance

E. constructor chaining

25. (2 points) Having the method public String getMonth() defined in FanDate and the method
public String getMonth() defined in ElfDate is an example of which?

A. encapsulation

B. overloading

C. overriding

D. inheritance

E. constructor chaining

Prog Struct & Abstr EXAM 1 Spring 2016, Page 7 of 14

26. (2 points) Having the Classes FanDate and ElfDate is an example of which?

A. encapsulation

B. overloading

C. overriding

D. inheritance

E. constructor chaining

27. (2 points) The choice of access modifiers for FanDate is an example of which?

A. encapsulation

B. overloading

C. overriding

D. inheritance

E. constructor chaining

Prog Struct & Abstr EXAM 1 Spring 2016, Page 8 of 14

Part IV. Understanding Object-Oriented Design

Refer to the following description when answering the questions in this part.

Lubna wants to design a software system to keep track of information about her smartphone software
apps. Each app has a name, a size (in MB), a version number, a release date, and an icon; was created by
a software developer; and can run on one or more smartphone operating systems. Types of apps include
games, social apps, productivity apps, utility apps, lifestyle apps, and entertainment apps. Software
developers may be individuals or groups, may or may not be businesses, and have names. Operating
systems are software with names, version numbers, and release dates.

Data for this system will be stored to and retrieved from files in two formats – a human-readable text
format and a machine-readable binary format.

28. (2 points) Which of the following is not an appropriate Class for this software?

A. App

B. Comparable

C. AppNameComparator

D. OperatingSystem

E. Driver

29. (2 points) Which Interface should be implemented to allow for objects to be sorted?

A. Serializable

B. Cloneable

C. Comparable

D. Collections.sort

E. Collections.binarySearch

30. (2 points) Which relationship should be included in this design?

A. Developer “is a” Person

B. App “is a” Software

C. Software “is a” OperatingSystem

D. App “is a” Game

E. App “is a” Utility

31. (2 points) Which relationship should not be included in this design?

A. App “has a” Name

B. Developer “has a” App

C. App “has a” OperatingSystem

D. OperatingSystem “has a” Name

E. Developer “has a” VersionNumber

Prog Struct & Abstr EXAM 1 Spring 2016, Page 9 of 14

32. (2 points) Which method should not be included in this design?

A. compareTo

B. App

C. getVersionNumber

D. setName

E. hasNext

33. (2 points) Which field should not be included in App?

A. productivity

B. releaseDate

C. developer

D. versionNumber

E. name

34. (2 points) For this software, App should be which of the following?

A. An Interface

B. A Class

C. An ArrayList

D. A method

E. A field

Prog Struct & Abstr EXAM 1 Spring 2016, Page 10 of 14

Part V. Understanding Object-Oriented Design and Java

35. (2 points) Which of the following is a benefit of encapsulation?

A. Fields are private

B. Accessors and mutators are public

C. Data are shielded from accidental modifications

D. Code size is reduced

E. Faster execution time

36. (2 points) Which is a key concept behind OO design and programming?

A. Equations can be represented in code

B. Software can represent the world

C. Programs do things

D. Logical reasoning can prove code correctness

E. Java is an OO language

37. (2 points) UML Class diagrams show which of the following?

A. Static relationships between Classes

B. The flow of execution through OO programs

C. Objects, Classes, and Interfaces

D. Class fields and Class method implementations

E. Class cast exceptions

38. (2 points) Which is a good reason for creating an Interface in Java?

A. To instantiate objects of the Interface type

B. To specify a contract that Classes may agree to

C. To provide encapsulation of data

D. To reduce code redundancy

E. All of the above

39. (2 points) Which is a good reason for creating an Abstract Class in Java?

A. To instantiate objects of the Abstract Class type

B. To specify a contract that Classes may agree to

C. To provide encapsulation of data

D. To reduce code redundancy

E. All of the above

40. (2 points) Which is a good reason for creating a (concrete) Class in Java?

A. To instantiate objects of the (concrete) Class type

B. To specify a contract that Classes may agree to

C. To provide encapsulation of data

D. To reduce code redundancy

E. All of the above

Prog Struct & Abstr EXAM 1 Spring 2016, Page 11 of 14

41. (2 points) Which is a good reason for using Generics in Java?

A. To move errors from run time to compile time

B. To reduce the amount of casting needed

C. To cut back on type checking using conditional statements

D. To allow the same methods to operate on data of different types

E. All of the above

42. (2 points) Which is an advantage of ArrayList over LinkedList?

A. ArrayList requires contiguous memory locations for the array

B. LinkedList can use non-contiguous memory locations

C. ArrayList allows for binary search

D. ArrayList doubles in size when it becomes full

E. ArrayList is a subclass of List

43. (2 points) Which is an advantage of Linked List over ArrayList?

A. ArrayList requires contiguous memory locations for the array

B. LinkedList can use non-contiguous memory locations the list nodes

C. ArrayList allows for binary search

D. ArrayList doubles in size when it becomes full

E. ArrayList is a subclass of List

44. (2 points) Which is a characteristic of HashSet?

A. HashSet requires contiguous memory locations for the hash table

B. HashSet has faster lookups for large sets than TreeSet

C. HashSet cannot contain duplicates

D. All of the above

E. None of the above

45. (2 points) Which distinguishes subclasses of Map from subclasses of Collection?

A. Map subclasses are not indexed; Collection subclasses are

B. Map subclasses cannot be sorted; Collection subclasses can

C. Map subclasses use keys to locate values; Collection subclasses use Compare/CompareTo

D. All of the above

E. None of the above

46. (2 points) Which is a characteristic of Map?

A. Map requires contiguous memory for the key/value map

B. Map has faster lookups for many elements than List

C. Map cannot contain duplicate keys

D. All of the above

E. None of the above

Prog Struct & Abstr EXAM 1 Spring 2016, Page 12 of 14

47. (2 points) Which is an advantage of Vector over Array List?

A. Vector is found in legacy code

B. Vector can use non-contiguous memory locations for the list nodes

C. Vector allows for binary search

D. Vector doubles in size when it becomes full

E. Vector is synchronized for thread safety

48. (2 points) Which is the purpose of serialVersionUID?

A. To identify the version of Java running the code

B. To identify the version of the object to be read/written

C. To identify the user requesting service

D. All of the above

E. None of the above

49. (2 points) Which is an advantage of FileInputStream over FileReader?

A. FileInputStream is more efficient for non-character data

B. FileInputStream is more efficient for character data

C. FileInputStream reads one line at a time

D. FileReader needs to use BufferedReader

E. FileInputStream needs to use BufferedInputStream

50. (2 points) Which is an advantage of wrapping a FileReader with a BufferedReader?

A. FileReader is intended for reading characters from a file; BufferedReader can read from
streams as well

B. FileReader can only read one character at a time; BufferedReader can read multiple
characters with one read

C. BufferedReader can read an entire object with one call to readObject; FileReader

cannot

D. BufferedReader can improve efficiency by loading more data than currently requested

E. Trick question – there is no advantage

Prog Struct & Abstr EXAM 1 Spring 2016, Page 13 of 14

Use these listings to answer the questions in Part II. (Feel free to tear off this page for easy reference.)

Listing 1.

1 pub l i c ab s t r a c t c l a s s Shape {
2 p r i v a t e Point center ;
3
4 pub l i c Shape () {
5 t h i s . center = new Point () ;
6 }
7
8 pub l i c Shape (Point center) {
9 t h i s . center = new Point (center) ;

10 }
11
12 . . .
13
14 pub l i c Point getCenter () {
15 return new Point (t h i s . center) ;
16 }
17
18 pub l i c void setCenter (Point center) {
19 t h i s . center = new Point (center) ;
20 }
21
22 pub l i c ab s t r a c t double getArea () ;
23 }

Listing 2.

1 pub l i c i n t e r f a c e Regular {
2 /∗∗
3 ∗ @return True i f a l l s i d e s match ; Fa l se o therwi s e .
4 ∗/
5 pub l i c ab s t r a c t boolean sidesMatch () ;
6
7 /∗∗
8 ∗ @return True i f a l l ang l e s match ; Fa l se o therwi se .
9 ∗/

10 pub l i c ab s t r a c t boolean anglesMatch () ;
11
12 /∗∗
13 ∗ @param length The new length f o r the s i d e s .
14 ∗/
15 pub l i c ab s t r a c t void resize (double length) ;
16 }

Prog Struct & Abstr EXAM 1 Spring 2016, Page 14 of 14

Listing 3.

1 import java . util . ArrayList ;
2 pub l i c c l a s s Square extends Rectangle implements Regular {
3
4 pub l i c Square (ArrayList<Point> corners) throws IllegalArgumentException{
5 super (corners) ;
6 i f (! sidesMatch (corners)) {
7 throw new IllegalArgumentException () ;
8 }
9 }

10
11 pub l i c boolean sidesMatch () {
12 double sideLength = Calculator . distance (getCorner (3) , getCorner (0)) ;
13 f o r (i n t i = 0 ; i < 3 ; i++) {
14 i f (sideLength !=
15 Calculator . distance (getCorner (i) , getCorner (i + 1))) {
16 return f a l s e ;
17 }
18 }
19 return true ;
20 }
21
22 . . .
23
24 pub l i c double getArea () {
25 double sideLength = Calculator . distance (getCorner (0) , getCorner (1)) ;
26 re turn sideLength ∗ sideLength ;
27 }
28 }

