
Lab Exercise 5 – Model, View, Controller plus Menus, Toolbars, and Dialogs
Computer Science 2334

Due by: Friday, March 24, 2017, 11:59 pm
This lab is an individual exercise. Students must complete this assignment on their own.

Objectives:

1. To review how the model, view, and controller interact in the Model, View, Controller design pattern.
2. To review how to create a dialog box based on the JOptionPane class.
3. To learn how to create a menu system using JMenuItem, JMenu and JMenuBar.
4. To learn how to create a toolbar system using JToolBar.
5. To demonstrate this knowledge by completing a series of exercises.

Instructions:

This lab exercise requires a laptop with an Internet connection. Once you have completed the exercises in this 
document, your team will submit it for grading.

Make sure you read this lab description and look at all of the source code posted on the class website for this lab
exercise before you begin working.

Assignment:

Graphical User Interfaces using the Model, View, Controller (MVC) design pattern are an important 
programming abstraction that shows how additional structure can be built from objects; it is also one that will 
be used in future projects. Carefully inspect how it works and the documentation comments included in the 
code.

1.  Download the Lab5-eclipse.zip project archive from the class website. Import the project into your 
Eclipse workspace using the slides from Lab 2. You will submit the modified project archive when you are 
finished.

2.  Review the source code for the Lab5Driver class. Note that it is identical (except for comments) to the 
Lab4Driver class. Also note that you won’t change the driver class from what it was in Lab 4, even though this 
program will have new and different functionality than the previous one. This is because in MVC, the driver 
just creates the model(s), view(s), and controller(s) and tells them about one another. After that point, they do 
all the work.

3. Review the source code for the Episode and Series classes, which are classes for representing (some aspects 
of) episodes and series. The Series class is extended by the SeriesModel class. This class is the data model for 
the program. It extends the Series class by adding variables and methods, and by overriding methods, in order 
to deal with the GUI. You will use methods provided in these classes to complete the code for the lab. Note that 
this is mostly the same data model used in Lab 4, although some methods have been added to or altered in 
Series to provide or modify functionality.

4. Modify Series further by making it serializable and by adding methods for object IO and for printing its data 
to the terminal. See the “TODO” comments in Series for details.

5.  Review the source code for the SeriesInputWindow class, which is a class that presents a GUI window to the 
user for adding new episodes to a series or for clearing out the collection of episodes. This window provides a 
view for the model data. Note that this is the same view used in Lab 4, with a few minor modifications.

CS 2334 Spring 2017 1



6.  Read through the source code for the AddEpisodeListener class, which is a class that is listens for the “Add 
Episode” button to be pressed in the SeriesInputWindow. In Lab 5, this class may present a GUI dialog for 
clarifying user intent when interacting with the SeriesInputWindow. In Lab 4, when a user entered an episode 
with the same name as one already in the episode collection, the old entry would simply be replaced by the new 
entry. In Lab 5, when the user enters an episode with the same name as one already in the episode collection, 
the user will be presented with a dialog window that will ask if the intent is really to replace the existing 
episode. The other option for the user will be to cancel the addition. All of these options will be presented using 
an object of the JOptionPane class, which is a new addition for Lab 5. You will create this JOptionPane in 
Step 8, below. An example of this dialog object is shown below. As you read through the source code for this 
class, note the “TODO” comments provided there that give hints as to what needs to be done in the program. The
guide at http://docs.oracle.com/javase/tutorial/uiswing/components/dialog.html gives good examples of using 
JOptionPanes.

7.  Is it necessary to create a JOptionPane instance? Why or why not? (Take into consideration the fact that 
JOptionPane is modal.)

8.  Within the actionPerformed() method of the AddEpisodeListener class, use a JOptionPane and create 
Strings for all of the information that is to be displayed to the user. These will include the messages to the user 
and the labels for the buttons. These components should be added to the JOptionPane.

9.  Complete the actionPerformed() method of the AddEpisodeListener class. If the user clicks the “Replace 
Episode” button, this method should save to the model all of the data entered into the SeriesInputWindow object,
replacing the data that was already there by using a mutator method provided by the data model.

10.  Compile the lab assignment with your modified SeriesController class. You should not have needed to 
modify any class other than the SeriesController class thus far. At this point you should be able to replace 
episodes using your code. However, the view will not know that the model has changed, so you may not see the 
updated information until you take other actions, such as adding an episode with a new name.

CS 2334 Spring 2017 2

http://docs.oracle.com/javase/tutorial/uiswing/components/dialog.html


11.  To correct the lack of updates to the view, look inside the SeriesModel class. There you will see some 
mutator methods from the Series class that have been overridden to inform their listeners when mutation events 
have taken place. You should override any additional mutators necessary to notify potential listeners of any data
changes due to the additional code you added to the SeriesController class. When these mutators have been 
overridden appropriately, all changes to the model should be immediately reflected in the view. Once you can 
see these immediate changes, move on to the next step of building your menu system.

12.  Create a menu item for each of the menu options “Load,” “Save,” and “Exit.” These are to be added to the 
program under a “File” menu. The type of each menu item should be JMenuItem. These objects should be 
initialized in the constructor of the class. The code for initializing each JMenuItem object will be similar to the 
following:
    JMenuItem jmiName = new JMenuItem("Name");

13.  Should the references to these JMenuItem objects be stored as class variables or variables local to a specific 
method? (In answering this question, consider which variables will be referenced in the actionPerformed() 
method.)

14. Inside the setInputWindow method of SeriesController you must also register each ActionListener on the 
JMenuItem by calling addActionListener() on each JMenuItem object. The SeriesController class should 
contain the inner classes that implement the ActionListener interface and act as the listeners on these menu 
items.

15. Create a JMenu object for the “File” menu. Add each menu item to the “File” menu using the add() method
of JMenu. Create a JMenuBar object and add the “File” menu using the add() method of JMenuBar. Add the 
JMenuBar to the SeriesInputWindow.

16. At this point, loading the data using the “Load” option from the “File” menu should cause the 
SeriesDisplayWindow to update. This should be apparent if the loaded data is different than whatever is was 
displayed before the load. If this update doesn’t happen, be sure that in SeriesModel you have overridden any 
mutator methods you added to Series.

17. In addition to the menu, we are going to implement a toolbar, using the JToolBar class. This toolbar will 
give us a “Print” option. To create this, create a JToolBar by declaring and instantiating it like you would any 
other GUI component. Then create a new JButton labeled “Print” and add it to the toolbar by calling the 
toolbar’s add() method. Last, add the toolbar itself by calling add().

18. All of the menu items and the button in the toolbar should be connected to methods in the Series class 
which conform to their names. You should have added these methods in Step 4, above (see Series for details). 

CS 2334 Spring 2017 3



When everything is completed, it should look approximately as follows (shown with menu closed and open):

19.  Ensure that there are no warnings generated for your code. Do not suppress warnings. Fix your code so 
that warnings are not necessary. (If you can't figure out how to fix your code to avoid the cast warning on the 
cloned actionListenerList or the one on loadEpisodeMap you may leave in those warnings.)

20.  Submit a completed electronic copy of these lab instructions along with the project archive created 
following the steps given in the Submission Instructions by 11:59 pm on Friday, 24 March 2017 through 
D2L (http://learn.ou.edu). You do not need to turn in a paper copy of your lab.

CS 2334 Spring 2017 4

http://learn.ou.edu/

