
Project 5
Computer Science 2334

Spring 2016
This project is individual work. Each student must complete this assignment independently.

User Request:

“Expand MDb by adding something akin to Six Degrees of Kevin Bacon and exception handling.”

Milestones:

1 Create appropriate classes, variables, and/or methods to deal with the concept of 
degrees of separation, as described below.

15 points

2 Create appropriate classes, variables, and/or methods to recursively search media 
makers for other media makers, as described below.

25 points

3 Create appropriate classes, complete with variables and methods, for the new views 
described below.

5 points

4 Revise as necessary the classes, including variables and methods, of the existing model,
controller, and views to allow them to correctly interact with the new methods and 
views.

15 points

5 Improve the robustness of your code by adding exception handling as described below. 15 points

► Develop and use a proper design. 15 points

► Use proper documentation and formatting. 10 points

Description:

An important skill in software design is extending the work you have done previously. For this project
you will build on Project 4 in order to add new functionality related to the concept of degrees of
separation between media makers and improving the exception handling for I/O.

Degrees of Separation:

For this project, we are going to define degree of separation DS between media makers informally, as
follows.

DS (A, A) = 0
DS (A, B) = 1 if A and B worked on the same media item.
DS (A, C) = 2 if A and C did not work on the same media item but there is some media maker B

for which DS (A, B) = 1 and DS (B, C) = 1.
Etc.

Even more informally, degree of separation simply means the number of steps it takes to get from one
media maker to another, counting other media makers as steps if they worked on the same media item in
the same year.

Models, Views, and Controllers:

As with Project 4, this project will be organized around the model, view, controller (MVC) design
pattern which gives us a way to organize code involving graphical user interfaces (GUIs). In particular,
you will create one or more models to hold the application data and extend them to act as sources for
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communicating with views, multiple views to display and manipulate different aspects of the data, and
one or more controllers to moderate between user gestures and the model(s) and views.

The models, views, and controllers described in Project 4 all need to be present and functioning in
Project 5. See Project 4 for a description of those elements. For this program you could reuse some or all
of the classes that you developed for your Project 4, although you are not required to do so. If your
Project 4 was designed and implemented well, you should be able to use those classes with little or no
modification. If your project 4 had significant design or implementation problems, you will need to
significantly change that code as well as added new code for the new functionality. Note that if you did
poorly on Project 4, this gives you a chance to redo your Project 4 and potentially gain credit for points
you missed previously.

In addition to the Project 4 features, Project 5 will add new features related to degrees of separation. In
particular, one new view will be added and the Selection View will be modified slightly.

The new view is described below. Like the pie chart and histogram views of Project 4, this new view
should persist until closed by the user or until the data it displays has been cleared from the system.
While it is open, it will not interfere with accessing other views. If the user modifies data in the model(s)
while this view is open, this view should update itself if the data relevant to it has been changed.

Degrees of Separation List View:

The Degrees of Separation List View will be a simple list of all of the steps from one media maker to
another. This view will be tied to a new menu item in the Display Menu of the Selection View. The new
menu item will be labeled “Separation List.” It will only be active when exactly two media makers are
selected in the list in the right panel of the content pane.

When two media makers are highlighted on the list and this menu item is clicked, one or more Degrees
of Separation List Views will appear, each showing a list. At the top of each list will be one of the
highlighted media makers. At the bottom of the list will be the second highlighted media maker.
Between them will be the minimum number of other media makers necessary to find a media connection
between the two. After each media maker, except for the last, will be the media items that forms the
connection to the next media maker on the list. There will be one such Degrees of Separation List View
for each such minimal connection. For example, if media makers A and B are highlighted and they
worked together on five different media projects, then there should be a total of five views, each
showing A’s name at the top with the shared media project next to it, and B’s name at the bottom.  As a
second example, if media makers A and Z are highlighted but A and Z never worked together on the
same media project and the shortest connection that MDb can find for A and Z goes through media
makers B, C, D, … Y, then a view should appear that shows A at the top of the list alongside the media
project shared with B, then B should appear second on the list followed by the media project shared with
C, and so on until Z appears at the bottom of the  list.  If additional connections of the same length are
also found between A and Z, those lists should appear in separate Degrees of Separation List Views.

Note that what counts as working together on the same media project will depend on which radio button
is selected in the selection view. If “People” is selected, then all credits are counted. However, if
“Actors” is selected, then only acting credits will be counted, etc. Also, note that what counts as the
same media project is working on the same movie or on the same episode of a series but not on different
episodes of the same series.

Important Note: In building up the lists for these views, MDb must search recursively through the data.
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Exception Handling:

Because I/O errors are likely to occur without warning, all of your I/O routines should be thoroughly
wrapped with exception handling routines. Note that this does not mean simply re-throwing all possible
I/O exceptions. Instead, you should consider the possible I/O exceptions individually and write
appropriate exception handling routines to provide for graceful handing of different exception types. For
example, a FileNotFoundException could be handled by asking the user to select an alternate file or
select not to do I/O at this time.

How to Complete this Project:

1 During the lab session and in the week following, you should work with your partner(s) to create
figures, on engineering paper or using drawing software, to show approximately what each view will
contain. These figures do not need to exactly match the appearance of the final windows but should
contain all major components and show their basic layout. This will be a part of your preliminary design
for your software.

2 During the lab session and in the week following, you should work with your partner(s) to determine
the classes, variables, and methods needed for this project and their relationship to one another. This will
be your preliminary design for your software.

2.1 Make a list of the nouns you find in the project description that relate to items of interest to the
“customer.” Mark these nouns as either more important or less important. More important nouns
describing the items of interest to the “customer” should probably be incorporated into your project as
classes and objects of those classes. Less important nouns should probably be incorporated as
variables of the classes/objects just described. This list will be turned in with your preliminary and
final designs long with your other design documents.

2.2 Make a list of the verbs you find in the project description that relate to items of interest to the
“customer.” Verbs describing behaviors of the desired objects and the systems as a whole should
probably be incorporated into your project as methods. This list will be turned in with your
preliminary and final designs long with your other design documents.

2.3 Make a list of adjectives, if any, in the project description. Adjectives often describe features of
objects that could be incorporated into your project as interfaces to be instantiated by your classes.
This list will be turned in with your preliminary and final designs long with your other design
documents.

2.4 Relate the nouns, verbs, and adjectives (if any), to classes/variables, methods, and interfaces (if
any) and list them. This list will be turned in with your preliminary and final designs long with your
other design documents.

2.5 Next, use UML class diagrams as tools to help you establish proper relationships between your
classes, variables, methods, and interfaces (if any).

3 Once you have completed your UML design, create Java “stub code” for the classes and methods
specified in your design. Stub code is the translation of UML class diagrams into code. It will contain
code elements for class, variable, and method names; relationships between classes such as inheritance,
composition, and aggregation as appropriate; variable types; and method signatures. Stub code does not,
however, contain method bodies (except for return statements for methods that return values or object
references – these should return placeholders such as null). Because we are using object-oriented
design, in which the inner workings of one class are largely irrelevant to the classes with which it
interfaces (that is, we are using encapsulation), we do not need to complete the implementation of any
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class until the design is complete.

4 Add comments to your stubbed code as specified in the documentation requirements posted on the
class website. Run your commented stubbed code through Javadoc as described in the Lab 2 slides. This
will create a set of HTML files in a directory named “docs” under your project directory.

5 Create unit tests using JUnit for all of the non-trivial units (methods) specified in your design. There
should be at least one test per non-trivial unit and units with many possible categories of input and
output should test each category. (For example, if you have a method that takes an argument of type int
and behaves differently based on the value of that int, you might consider testing it with a large
positive int, and small positive int, zero, a small negative int, and a large negative int as these are all
likely to test different aspects of the method.)

6 At the end of the first week (see Due Dates and Notes, below), you will turn in your preliminary
design documents including your view figures, which the TA will grade and return to you with helpful
feedback on your preliminary design. Please note: You are encouraged to work with the instructor and
the TAs during their office hours during the design week to get feedback throughout the design process
as needed.

Final Design and Completed Project

7 Using feedback from the instructor and TAs as well as your own (continually improving)
understanding of OO design, revise your view figures and preliminary UML design.

8 Make corresponding changes to your stub code, including its comments.

9 Make corresponding changes to your unit tests.

10 Implement the design you have developed by coding each method you have defined. If you find
that your design does not allow for the implementation of all methods, repeat steps 5 and 6.

11 Test each unit as it is implemented and fix any bugs.

12 Test the overall program and fix any bugs.

13 Once you have completed the project and are ready to submit it for grading, create a new set of
Javadoc files using Eclipse and inspect them to make sure your final design is properly documented in
your source code.

14 Submit all parts of your completed project. (See below for due dates and requirements regarding
submission of paper and electronic copies of project components.)

Extra Credit Features:

You may extend this project with more features for an extra 5 points of credit. For example, you could
think of ways to present the user with helpful information about the program, such as a context-
dependent help system.

To receive the full five points of extra credit, your extended features must be novel (unique) and must
involve effort in the design of the extra features and their integration into the project and the actual
coding of the features. Also, you must indicate on your final UML design which portions of the design
support the extra feature(s); and you must include a write-up of the feature(s) in your milestones.txt file.
The write-up must indicate what each feature is, how it works, how it is unique, and the write-up must
cite any outside resources used.
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Due Dates and Notes:

Your preliminary design (view figures; list of nouns, verbs, and adjectives; UML; stub code; detailed
Javadoc documentation; and unit tests) is due on Monday, 25 April 2016. Submit the project archive
following the steps given in the submission instructions by 11:00pm. Submit your view figures by
photographing or scanning your hand drawn figures or exporting to png or pdf figures made using
drawing software, then place them in the doc directory before creating your project archive for
submission.

The final version of your project including final design (UML, Javadoc, unit tests) and final
implementation is due on Thursday, 5 May 2016. Submit the project archive following the steps given
in the submission instructions by 11:00pm.

You may write your program from scratch or may start from programs for which the source code is
freely available on the web or through other sources (such as friends or student organizations). If you do
not start from scratch, you must give a complete and accurate accounting of where all of your code came
from and indicate which parts are original or changed, and which you got from which other source.
Failure to give credit where credit is due is academic fraud and will be dealt with accordingly.

When zipping your project (or design) for submission, be sure to follow the instructions carefully.
In particular, before zipping the project be sure to

• place additional files (such as UML diagrams, cover page, and milestones files) within the
“docs” directory inside your Eclipse folder for the given project and be sure that Eclipse
sees these files (look in the Package Explorer and hit Refresh if necessary), and

• rename the project folder to your 4x4. Note that renaming the project folder to your 4x4
before zipping is not the same thing as naming the zip file with your 4x4. The latter is fine;
the former is mandatory. 
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