
Project 2
Computer Science 2334

Spring 2015
This project is group work. Each group must have at least two members.

User Request:

“Create a sortable and searchable data system for people and places.”

Milestones:

1. Use keyboard input to get information from the user. 5 points

2. Use text file I/O to read and write text files. 10 points

3. Create classes to store data on people and places (cities and states). Note that you
should create any additional classes (abstract and/or concrete) and/or interfaces you
deem necessary to arrive at a good design.

10 points

4. Implement both the Comparable and Comparator interfaces to compare one person to
another.

10 points

5. Use a List to store, retrieve, and display data related to people and places as described
below.

15 points

6. Use the sort() and binarySearch() methods from the Collections class to sort and
search for data related to people as described below.

20 points

► Develop and use a proper design. (See Milestone 3, above.) 15 points

► Use proper documentation and formatting. 15 points

Description:

People have certain life history data, such as birthdate and birthplace. Likewise, places such as cities
and states have data associated with them. For example, states contain cities and they are the birthplaces
of people, while cities are found in states and are also the birthplaces of people. Note that the relation of
cities to states is different from the relation of states to cities, because each city is found in only one
states whereas each state contains multiple cities. For this project, you will create a system that models
these relationships between people, cities, and states.

As with Project 1, you will put together several techniques and concepts learned in CS 1323 and some
new techniques to make an application. This application will allow users to search through data on
people and places. We will call this application PeoplAce. Note that much of the code you write for this
program could be reused in more complex applications, as we will see in later assignments.

Your software will first ask the user for the file where data is stored. This should be done using the
technique described in the section below entitled Reading Input from the Keyboard. It will then read in
the specified data file and store the data into PeoplAce. Each line in the data file describes a particular
person, including that person’s birthplace. The format of this file is the same as for Project 1.

Once the data is loaded, your program will enter a loop where it asks the user questions. As with the file
name, answers to these questions should come from the keyboard as described in the section entitled
Reading Input from the Keyboard. Depending on each answer given, PeoplAce will proceed through a
tree of questions before diplaying data to the user and starting over with the first question again.

CS 2334 Spring 2015 1

The first question all users will be asked is “People or Place?” If the user enters “People,” then
PeoplAce will ask “Sort or Search?” If the user enters “Sort,” PeoplAce will ask “First or Last?” If the
user enters “First,” then PeoplAce will display to the user a list of information on all of the people in the
database, sorted by first name then last name then middle name. (Examples: “George Washington”
would be listed before “John Adams” because the first name “George” comes before the first name
“John” in standard lexicographic ordering and last names would be ignored. “Andrew Jackson” would
be listed before “Andrew Johnson” because the first name is “Andrew” for both entries and the last
name “Jackson” comes before the last name “Johnson.” “George Herbert Walker Bush” would be listed
before “George Walker Bush” because the first and last names match and “Herbert Walker” comes
lexicographically before “Walker.”) Similarly, if the user enters “Last” (to the question “First or Last?”),
PeoplAce will display to the user a list of information on all of the people in the database, sorted by last
name then first name then middle name. (Example: “John Adams” would be listed before “George
Washington” because “Adams” comes before “Washington.”)

If the user enters “Search” rather than “Sort,” PeoplAce will ask “Exact or Partial?” If the user enters
“Exact,” then PeoplAce will prompt for an exact name, then search the database for a name that matches
the input exactly and display information on that person to the user. (Example: If the user input “John
Adams” then a person in the database named “John Adams” would match but a person in the database
named “John Quincy Adams” would not.) If the user enters “Partial,” then PeoplAce will prompt for a
partial name, then search the database for names that include the input anywhere within the name, and
display information on all of the matching people to the user. (Example: If the user input “John” then
that would match “John Adams,” “John Quincy Adams,” “John Tyler,” “Andrew Johnson,” etc.)

If the user enters “Place” rather than “People,” then PeoplAce will ask “State or City?” If the user enters
“State,” PeoplAce will prompt the user for a two letter state abbreviation, then search the database for a
state matching the given input, and display to the user an alphabetical list of all cities within that state
showing information on all of the people in the database born in each city. If the user enters “City,”
PeoplAce will likewise prompt the user for a two letter state abbreviation, then a city name, then search
the database for a city with a name that matches the input exactly and display information on all of the
people in the database who were born in that city.

In all cases, data will be displayed to the console as described in the section entitled Output Format.
Once data is displayed to the user, the user will be asked “Save or Skip?” If the user chooses “Save,”
PeoplAce will prompt for a file name to which the output should be saved, then save the data in a file
with the given name in the same format as it was displayed to the user. After saving or skipping,
PeoplAce will ask the user “Continue or Exit?” If the user enters “Continue,” PeoplAce will return to
the first question (“People or Place?”). If the user enters “Exit,” PeoplAce will thank the user for using
PeoplAce and exit gracefully.

If the user response to any question is incorrect (that is, does not allow PeoplAce to proceed to the next
step), then People should present the user with a polite message stating that and asking the user to give
new input. (Examples: If the user inputs “Peeple” to the original question “People or Place?” then
PeoplAce should saying something like “You did not enter ‘People’ or ‘Place.’ Please enter one or the
other.” If the user searches on a name that does not exist in the database, PeoplAce should say
something like “I could not find a person matching the name you entered. Please enter a different
name.”)

CS 2334 Spring 2015 2

Learning Objectives:

Sorting and Searching:

Sorting data can be useful to users because the output may be organized in a way that makes it easier to
use. It can also be useful to software developers because it can improve the efficiency of their software.
Consider finding information about a person based on name. If the data structure holding the data is
unsorted, you need to do a linear search through it to find an entry. However, if the data structure is
sorted based on name, you can do a binary search instead. A binary search will, in most cases, take far
fewer comparisons to find the desired entry than a linear search. You should ensure that your program
uses a binary search when searching for an exact name. (Why only for exact names? Answer this
question in your writeup on the project.)

Note that a collection in Java can have at most one natural ordering. You should determine an
appropriate natural ordering for people (which must implement Comparable) and define the
compareTo() method(s) to use that ordering. The other sort option will need to be implemented using
the compare() method that comes from implementing Comparator.

Input/Output Formats:

Input and Output Format

The input file format for Project 2 is the same as the input file format from Project 1. See that project
for details.

The output format for the data on a single person matches that of the input format. If data on more than
one person is displayed, headings will precede it. For example, if the user asked for data on people born
in Michigan (“MI”), the output should look like this:

MI:
Benton Harbor:
Quacy Maria Barnes,26/09/1976,Benton Harbor,MI
Detroit:
Markita Aldridge,15/09/1973,Detroit,MI
Daedra Janel Charles,22/11/1968,Detroit,MI
Jermaine Jackson,07/06/1976,Detroit,MI
Flint:
Tawona Alhaleem,17/10/1974,Flint,MI
Pamela Denise McGee,01/12/1962,Flint,MI
Kayla Pedersen,04/04/1989,Flint,MI
If the output is based on a search, the search term should be listed as the heading. (Example: If the user
asked for a partial match on name and entered “Jack” then the heading should be something like
“Partial Name Match for “Jack”:.”)

Implementation Issues:

File I/O:

To perform output to a file, use the FileWriter class with the BufferedWriter class as follows.

FileWriter outfile = new FileWriter("output.txt");
BufferedWriter bw = new BufferedWriter(outfile);
bw.write("This is a test -- did it work?");
bw.newLine();
bw.close();

CS 2334 Spring 2015 3

When you have finished writing to a file, you must remember to close it, or the file won't be saved. If
you fail to close the file, it will be empty!

Remember to add 'throws IOException' to the signature of any method that uses a FileWriter or
BufferedWriter or that directly or indirectly calls a method that performs File I/O.

Reading Input from the Keyboard:

In order to get information from the user for this project, you need to read input from the Keyboard.
This can be done using the InputStream member of the System class, that is named “in”. When this
input stream is wrapped with a BufferedReader object, the readLine() method of the BufferedReader
class can be used to read and store all of the characters typed by the user into a String. Note that
readLine() will block until the user presses the Enter key, that is, the method call to readLine() will
not return until the user presses the Enter key.

The following code shows how to wrap and read strings from System.in using an InputStreamReader
and a BufferedReader.

BufferedReader inputReader = new BufferedReader(
new InputStreamReader(System.in));

System.out.print("Type some input here: ");
String input = inputReader.readLine();
System.out.println("You typed: " + input);

You need to add 'throws IOException' to the signature of any method that uses or that directly or
indirectly calls a method that uses a BufferedReader or InputStreamReader.

How to Complete this Project:

Preliminary Design:

1 During the lab session and in the week following, you should work with your partner(s) to
determine the classes, variables, and methods needed for this project and their relationship to one
another. This will be your preliminary design for your software.

1.1 Be sure to look for nouns in the project description. More important nouns describing the
items of interest to the “customer” should probably be incorporated into your project as classes and
objects of those classes. Less important nouns should probably be incorporated as variables of the
classes/objects just described.

1.2 Be sure to look for verbs in the project description. Verbs describing behaviors of the desired
objects and the systems as a whole should probably be incorporated into your project as methods.

1.3 Also look for adjectives, if any, in the project description. Adjectives often describe features
of objects that could be incorporated into your project as interfaces to be instantiated by your
classes.

1.4 Write down these nouns, verbs, and adjectives (if any), along with their corresponding
classes/variables, methods, and interfaces (if any).

1.5 Next, use UML class diagrams as tools to help you establish proper relationships between
your classes, variables, methods, and interfaces (if any).

2 Once you have completed your UML design, create Java “stub code” for the classes specified in
your design. Stub code is the translation of UML class diagrams into code. It will contain code

CS 2334 Spring 2015 4

elements for class names (potentially including names for abstract classes and interfaces), variable
names, and method names; relationships between classes such as inheritance, composition, and
aggregation as appropriate; variable types; and method signatures. Stub code does not, however, contain
method bodies (except for return statements for methods that return values or object references – these
should return placeholders such as null). Because we are using object-oriented design, in which the
inner workings of one class are largely irrelevant to the classes with which it interfaces (that is, we are
using encapsulation), we do not need to complete the implementation of any class until the design is
complete.

3 Add comments to your stubbed code as specified in the documentation requirements posted on the
class website. Run your commented stubbed code through Javadoc as described in the Lab 2 slides. This
will create a set of HTML files in a directory named “docs” under your project directory.

4 Create unit tests using JUnit for all of the non-trivial units (methods) specified in your design.
There should be at least one test per non-trivial unit and units with many possible categories of input and
output should test each category. (For example, if you have a method that takes an argument of type int
and behaves differently based on the value of that int, you might consider testing it with a large positive
int, and small positive int, zero, a small negative int, and a large negative int as these are all likely
to test different aspects of the method.)

5 At the end of the first week, you will turn in your preliminary design documents (see Due Dates
and Notes, below), which the TA will grade and return to you with helpful feedback on your preliminary
design. Please note: You are encouraged to work with the instructor and the TAs during their office
hours during the design week to get feedback throughout the design process as needed.

Final Design and Completed Project

6 Using feedback from the instructor and TAs as well as your own (continually improving)
understanding of OO design, revise your preliminary UML design.

7 Make corresponding changes to your code, including its comments.

8 Make corresponding changes to your unit tests.

9 Create a new set of Javadoc files using Eclipse and inspect them to make sure your final design is
properly documented in your source code.

10 Implement the design you have developed by coding each method you have defined. A good
approach to the implementation of your project is to follow the project's milestones in the order they
have been supplied. If you find that your design does not allow for the implementation of all methods,
repeat steps 6, 7, 8, and 9.

11 Test each unit as it is implemented and fix any bugs.

12 Test the overall program and fix any bugs.

13 Submit your project (see Due Dates and Notes, below).

Extra Credit Features:

You may extend this project with more search features for an extra 5 points of credit. Think of ways to
enable a wider range of searches to be used, such as searching based on dates or ages or regular
expressions or wild cards. Alternatively, think of ways to decompose one of the person class into logical
subclasses. You could also revise user interface elements. If you revise the user interface, you must still
read the file name from the keyboard and the data from the text files.

CS 2334 Spring 2015 5

To receive the full five points of extra credit, your extended feature must be novel (unique) and it must
involve effort in the design and integration of the feature into the project and the actual coding of the
feature. Also, you must indicate, on your final UML design, the portions of the design that support the
extra feature(s); and you must include a write-up of the feature(s) in your milestones file. The write-up
must indicate what the feature is, how it works, how it is unique, and the write-up must cite any outside
resources used. If you create any non-trivial units in your extra credit work, you must create appropriate
unit tests for them.

Due Dates and Notes:

Note that both the preliminary design and the final project are to be submitted electronically. Paper
copies will not be submitted. The UML should preferably be in PDF format, although high resolution
PNG or JPG would be acceptable alternatives. The list of nouns, verbs, and adjectives and their
corresponding classes/variables, methods, and interfaces should be in PDF format.

Your preliminary design (list of nouns, verbs, and adjectives; UML; stub code; detailed Javadoc
documentation; and unit tests) is due on Wednesday, February 18th. Submit the project archive
following the steps given in the submission instructions by 10:00pm.

The final version of your project including final design (UML, Javadoc, unit tests) and final
implementation is due on Wednesday, February 25th. Submit the project archive following the steps
given in the submission instructions by 10:00pm.

You may write your program from scratch or may start from programs for which the source code is
freely available on the web or through other sources (such as friends or student organizations). If you do
not start from scratch, you must give a complete and accurate accounting of where all of your code came
from and indicate which parts are original or changed, and which you got from which other source.
Failure to give credit where credit is due is academic fraud and will be dealt with accordingly.

As noted in the syllabus, you are required to work on this programming assignment in a group of at least
two people. It is your responsibility to find other group members and work with them. The group
should turn in only one (1) copy of the assignment. This should contain the names and student ID
numbers of all group members on the cover sheet. If your group composition changes during the course
of working on this assignment (for example, a group of five splits into a group of two and a separate
group of three), this must be clearly indicated in your cover sheet, including the names and student ID
numbers of everyone involved and details of when the change occurred and who accomplished what
before and after the change.

Each group member is required to contribute equally to each project, as far as is possible. You must
thoroughly document which group members were involved in each part of the project. For example, if
you have three methods in your program and one method was written by group member one, the second
was written by group member two, and the third was written jointly and equally by group members three
and four, your cover sheet must clearly indicate this division of labor. Giving improper credit to group
members is academic misconduct and grounds for penalties in accordance with school policies.

CS 2334 Spring 2015 6

	User Request:
	Milestones:
	Description:
	Learning Objectives:
	Sorting and Searching:

	Input/Output Formats:
	Input and Output Format

	Implementation Issues:
	File I/O:
	Reading Input from the Keyboard:

	How to Complete this Project:
	Preliminary Design:
	Final Design and Completed Project

	Extra Credit Features:
	Due Dates and Notes:

