
Project #3
Computer Science 2334

Spring 2014
This project is group work. Each group must have at least two members.

User Request:

“Create a sortable and searchable geographic data system with places of interest
that uses text and binary input and output and a graphical data display.”

Milestones:

1. Implement Serializable for the classes necessary to save and load all geographic data. 10 points

2. Use object serialization to save and load the geographic to and from a binary file. 15 points

3. Implement a simple graphical display for showing counts of data. 25 points

4. Create appropriate classes to store information on places of interest. 10 points

5. Use LinkedHashMaps to save to and retrieve information on places of interest. 10 points

► Develop and use a proper design. (See Milestone 3, above.) 15 points

► Use proper documentation and formatting. 15 points

Description:

An important skill in software design is extending the work you have done previously. For this project
you will rework Project #2, implementing object serialization for input and output, using the Java
LinkedHashMap class, and adding a graphical display. To help you locate the modifications from Project
#2 to Project #3, the changes between the instructions of the two projects are highlighted here in yellow.

People routinely delineate parts the world into different kinds of geographic regions, such as cities,
countries, and continents. Various kinds of regions have similar measurable characteristics such as
population size and area. However, different kinds of regions also have different characteristics – for
example, continents contain countries but cities do not contain countries. For this project, you will
create a system to keep track of a few common types of geographic regions. In particular, it will keep
track of cities, countries, and continents. For all of the geographic regions, it will keep track of
population size and area. In addition, it will keep track of latitude, longitude, and elevation for cities.

Besides the types geographic regions described above, this project will include another geographic
region – places of interest. A place of interest is a geographic feature that has an area greater than ½
square mile (i.e., that would round off to 1 square mile or more) but that does not have a substantial
permanent human population (so it would not be considered a city). Example places of interest include
lakes, forests, mountains, and large parks (such as national parks). For each place of interest, your
system will keep track of its name, a brief description of the type of place it is (e.g., “lake” or “forest”),
its area, and the country (or countries) where it is located.

As with Project #1, you will put together several techniques and concepts learned in CS 1323 and some
new techniques to make an application. This application will allow users to search through data on
geographic regions. We will call this application GeoGrapher. Note that much of the code you write
for this program could be reused in more complex applications, as we will see in later assignments.

Your software will first ask the user for the names of either four text data files or one binary data file

CS 2334 Spring 2014 1

where geographic data is stored. (For the text data files, there will be one for continents, one for
countries, one for cities, and one for places of interest. For the binary data file, all geographic data will
be placed in the same file.) This should be done using the technique described in the section below
entitled Reading Input from the Keyboard. It will then read in the specified text or binary data file(s)
and store the data into GeoGrapher. Each line in each text data file describes a particular geographic
region. The formats of these text files are described below under Text Input and Output Format.

Once the data is loaded from the file(s), your program will enter a loop where it repeatedly asks users
several questions: As with the file names, user input to answer these questions should come from the
keyboard using the technique described in the section below entitled Reading Input from the Keyboard.

The first question all users will be asked is “What type of geographic data are you interested in?” The
user will select a numeric value between 1 and 6 with the following meaning for each: ‘1’ all continents,
‘2’ all countries, ‘3’ all cities, ‘4’ all places of interest, ‘5’ all countries within a given continent, and ‘6’
all cities within a given country. If the user chooses 5, your program will ask for the name of a
continent. If the user chooses 6, your program will ask for the name of a country.

The next question all users will be asked is “How should the data be sorted?” The user will enter an
‘AR’ for area, ‘PO’ for population (not valid for places of interest), ‘LA’ for latitude (only a valid option
for all cities or all cities within a given country), ‘LO’ for longitude (also only a valid option for all cities
or all cities within a given country), ‘EL’ for elevation (also only a valid option for all cities or all cities
within a given country), ‘LE’ for lexicographic (“alphabetical”) order, and ‘RA’ for random.

The next question all users will be asked is “How should that data be output?” The user will enter ‘PS’
for print to the screen, ‘PF’ for print to a file, ‘SP’ for search for a particular region, or ‘GD’ for
graphical display. If the user chooses either print option, then all of the geographic data of the type
selected will be printed in its current order (whatever that may be, given the last sort option) and in the
format described below under Text Input and Output Format. (If the print option is ‘PF’ the user will
also be prompted for an output file name.) If the user chooses search, he or she will be prompted for the
name of a region on which to search, then your program will search for and display the data on that
region. (You may assume that the region name is unique in GeoGrapher.) If no region with that name
appears in the data searched, the user will be informed of that fact. If the user chooses graphical display,
GeoGrapher will display a graphical display of the selected data as described below under Graphical
Display.

After the data is output, the final question all users will be asked is “Do you wish to continue?” The
user will choose ‘C’ for continue or ‘Q’ for quit. If the user chooses to continue, GeoGrapher will loop
back to the first question. If the user chooses to quit, your program will thank him or her for running the
program and exit without errors.

For all of the questions, if the user enters an invalid option, your program will inform the user of the
error and ask the question again.

So, for example, if the user first selects ‘1’ for continent, then ‘LE’ for lexicographic, then ‘PS’ for print
to screen, GeoGrapher would print out Africa, Antarctica, Asia, Europe, North America, Oceania, and
South America, in that order (assuming that all of those continents appeared in the input data file). As a
second example, if the user first selects ‘4’ for all countries within a given continent, then enters
‘Oceania’ as the continent, then ‘PO’ for population, then ‘PS’ for print to screen, GeoGrapher would
print out Nauru, Tuvalu, Palau, Marshall Islands, Kiribati, Tonga, Federated States of Micronesia,
Samoa, Vanuatu, Solomon Islands, Fiji, New Zealand, Papua New Guinea, and Australia in that order
(assuming that all of those countries appeared in the input data file with populations as given in your
sample data file).

CS 2334 Spring 2014 2

Graphical Display:

Producing graphical displays of information can be very useful to users. Therefore, your program will
have the ability to display bar charts and maps to the user to display the data. When the user selects
option ‘GD’ for Graphical Display, as described above, a bar chart or map will be generated and
presented to the user. The type of bar chart or map will be determined by the type of data chosen by the
user in response to the first question and the sorting order of the data chosen by the user in response to
the second question.

If the user has chosen option 1, 2, 3, or 4 (all continents, all countries, all cities, or all places of interest)
and to sort the data by area, GeoGrapher will display a chart with one bar for each region in the selected
data, with the height of each bar proportional to the area of the region and arranged left to right across
the chart, such that the tallest bar is on the left and the shortest bar is on the right. Each bar should be
labeled below with the name of the corresponding region and immediately above with that region’s area.
If the user has chosen option 1, 2, or 3 and to sort by population, GeoGrapher will display a similar chart
but using population rather than area.

If the user has chosen option 5 or 6 (all countries within a given continent or all cities within a given
country) and to sort the data by area, GeoGrapher will display a single bar composed of several smaller
segments. There will be one segment in the bar to correspond to each of the subregions in the selected
region (e.g., the countries within the selected continent) and the height of each segment will be
proportional in height to the area of the corresponding subregion. These segments will be arranged
progressively from largest on the bottom to smallest on the top. Each segment will be labeled on the left
with the area of the subregion and on the right with the name of the subregion.

If the user has chosen option 3 or 6 (all cities or all cities within a given country) and to sort by latitude
or longitude, GeoGrapher will display a plate carrée map projection of the world with points plotted on
it for all of the cities in the selected data. Each point should be labeled immediately above it with the
name of the corresponding city.

Each graphical display should have a title at the top clearly indicating the data it represents (e.g.,
“Population of All Cities in Database” or “Location of All Cities in Database”). Other details of the
graphical displays are up to you (colors, etc.).

Learning Objectives:

Sorting and Searching:

Sorting data can be useful to users because the output may be organized in a way that makes it easier to
use. It can also be useful to software developers because it can improve the efficiency of their software.
Consider finding information about a city based on its name. If the data structure holding the city data is
unsorted, you need to do a linear search through it to find an entry. However, if the data structure is
sorted based on name, you can do a binary search instead. A binary search will, in most cases, take far
fewer comparisons to find the desired entry than a linear search.

To observe this efficiency gain, you will measure the number of comparisons the system uses to find a
city based on name, given the ordering of the data in GeoGrapher. Sort the data using one ordering
(such as ‘EL’) then search for five different city names, record the values for the resulting number of
comparisons, repeat this for each possible ordering of the data, then present them in a simple table using
the format shown below. (You may need to adjust spacing for long titles.)

 1. 2. 3. 4. 5.

Name:

CS 2334 Spring 2014 3

Order Search Time Search Time Search Time Search Time Search Time

----- ----------- ----------- ----------- ----------- -----------

 AR

 PO

 LA

 LO

 EL

 LE

 RA

Note that some of the sort options do not define a unique ordering. For example, random (one of the
possible sort options) is not related to the name of the city searched for (the search term). Moreover, the
ordering defined by this sort option is not unique. (Each time the random option is selected, the same
list may be placed in a different order, so the ordering of the cities based on this criterion is arbitrary.)
For these situations, you will have no choice but to search the collection linearly. On the other hand,
when the sort option is related to the search terms and does define a unique ordering, a binary search is
preferred and should be used. For which sort option(s) is it appropriate to use a binary search (AR, PO,
LA, LO, EL, LE, or RA)? Explain your answers. For which sort option(s) is it not appropriate to use a
binary search? Explain your answers.

Put the table of data and your answers to these questions into milestones.txt under milestone 5.

Note that a collection in Java can have at most one natural ordering. You should determine an
appropriate natural ordering for each type of region (which must implement Comparable) and define the
compareTo() method(s) to use that ordering. The other sort options will need to be implemented using
compare() methods that come from implementing Comparator.

Hash Maps:

You have already dealt with lists as a basic data structure for storing and retrieving data. Hash tables are
an alternate way to quickly store and retrieve data. Java provides the LinkedHashMap class (among
others) which has this functionality. In this project you will use a LinkedHashMap for saving and
retrieving information on collections of places of interest. The keys in this map will be place names.
The values will be the places themselves. Note that we are using a LinkedHashMap so that it can retain
an ordering based on area. You should consider how to get the data into the LinkedHashMap in that
order.

Once you have the data in the LinkedHashMap with the links preserving the order by area, you should
conduct five linear searches through this data structure based on areas and a five lookups using keys
(place names). Record the system time before and after these searches/lookups to see how quickly they
happen. Construct a simple table with this information and explain what this tells you about linear
searches and hash table lookups.

Input/Output Formats:

Text Input and Output Format

Each line of each data file describes a particular region. For the continent file, each line contains a
continent's name, followed by a continent and a space, followed by the approximate population of the
continent, followed by a comma and a space, followed by the approximate area of the continent in
square miles.

CS 2334 Spring 2014 4

Examples:

Antarctica, 4490, 5300000
North America, 542056000, 9460000

For the country file, each line contains a country's name, followed by a comma and a space, followed by
the approximate population of the country, followed by a comma and a space, followed by the
approximate area of the country in square miles, followed by a comma and a space, followed by the
continent where the country is located.

Examples:

United States, 313232044, 371891, North America
Mexico, 113724226, 761602, North America

For the city file, each line contains a city's name, followed by a comma and a space, followed by the
approximate population of the city, followed by a comma and a space, followed by the approximate area
of the city in square miles, followed by a comma and a space, followed by the country where the city is
located. For some (though not all) cities, the country name will be followed by a comma and a space,
followed by a reference latitude, followed by a comma and a space, followed by a reference longitude,
followed by a comma and a space, followed by a reference elevation. (I am using the term “reference”
with regard to latitude, longitude, and elevation because cities have areas and therefore do not have
single latitude, longitude, and elevation values.)

Examples:

Los Angeles, 11789000, 1668, United States
Mexico City, 17400000, 800, Mexico, N19.4271, W99.1276, 2216

In reading these three files, you may assume that the country file will not contain a reference to any
continent not in the continent file and that the city file will not contain a reference to any country not in
the country file.

Implementation Issues:

Text File I/O:

To perform output to a text file, use the FileWriter class with the BufferedWriter class as follows.

FileWriter outfile = new FileWriter("output.txt");
BufferedWriter bw = new BufferedWriter(outfile);
bw.write("This is a test -- did it work?");
bw.newLine();
bw.close();

When you have finished writing to a file, you must remember to close it, or the file won't be saved. If
you fail to close the file, it will be empty!

Remember to add 'throws IOException' to the signature of any method that uses a FileWriter or
BufferedWriter or that directly or indirectly calls a method that performs File I/O.

Reading Input from the Keyboard:

In order to get information from the user for this project, you need to read input from the Keyboard.
This can be done using the InputStream member of the System class, that is named “in”. When this

CS 2334 Spring 2014 5

input stream is wrapped with a BufferedReader object, the readLine() method of the BufferedReader
class can be used to read and store all of the characters typed by the user into a String. Note that
readLine() will block until the user presses the Enter key, that is, the method call to readLine() will
not return until the user presses the Enter key.

The following code shows how to wrap and read strings from System.in using an InputStreamReader
and a BufferedReader.

BufferedReader inputReader = new BufferedReader(
new InputStreamReader(System.in));

System.out.print("Type some input here: ");
String input = inputReader.readLine();
System.out.println("You typed: " + input);

You need to add 'throws IOException' to the signature of any method that uses or that directly or
indirectly calls a method that uses a BufferedReader or InputStreamReader.

How to Complete this Project:

Preliminary Design:

1 During the lab session and in the week following, you should work with your partner(s) to
determine the classes, variables, and methods needed for this project and their relationship to one
another. This will be your preliminary design for your software.

1.1 Make a list of the nouns you find in the project description that relate to items of interest to
the “customer.” Mark these nouns as either more important or less important. More important
nouns describing the items of interest to the “customer” should probably be incorporated into your
project as classes and objects of those classes. Less important nouns should probably be
incorporated as variables of the classes/objects just described. This list will be turned in with your
preliminary and final designs long with your other design documents.

1.2 Make a list of the verbs you find in the project description that relate to items of interest to the
“customer.” Verbs describing behaviors of the desired objects and the systems as a whole should
probably be incorporated into your project as methods. This list will be turned in with your
preliminary and final designs long with your other design documents.

1.3 Be sure to use UML class diagrams as tools to help you with the design process.

2 Once you have completed your UML design, create Java “stub code” for the classes specified in
your design. Stub code is the translation of UML class diagrams into code. It will contain code
elements for class, variable, and method names; relationships between classes such as inheritance,
composition, and aggregation as appropriate; variable types; and method signatures. Stub code does not,
however, contain method bodies (except for return statements for methods that return values or object
references – these should return placeholders such as null). Because we are using object-oriented
design, in which the inner workings of one class are largely irrelevant to the classes with which it
interfaces (that is, we are using encapsulation), we do not need to complete the implementation of any
class until the design is complete.

3 Add comments to your stubbed code as specified in the documentation requirements posted on the
class website. Run your commented stubbed code through Javadoc as described in the Lab #2 slides.
This will create a set of HTML files in a directory named “docs” under your project directory.

4 Create unit tests using JUnit for all of the non-trivial units (methods) specified in your design.

CS 2334 Spring 2014 6

There should be at least one test per non-trivial unit and units with many possible categories of input and
output should test each category. (For example, if you have a method that takes an argument of type int
and behaves differently based on the value of that int, you might consider testing it with a large positive
int, and small positive int, zero, a small negative int, and a large negative int as these are all likely
to test different aspects of the method.)

5 At the end of the first week, you will turn in your preliminary design documents (see Due Dates
and Notes, below), which the TA will grade and return to you with helpful feedback on your preliminary
design. Please note: You are encouraged to work with the instructor and the TAs during their office
hours during the design week to get feedback throughout the design process as needed.

Final Design and Completed Project

6 Using feedback from the instructor and TAs as well as your own (continually improving)
understanding of OO design, revise your preliminary UML design.

7 Make corresponding changes to your code, including its comments.

8 Make corresponding changes to your unit tests.

9 Implement the design you have developed by coding each method you have defined. A good
approach to the implementation of your project is to follow the project's milestones in the order they
have been supplied. If you find that your design does not allow for the implementation of all methods,
repeat steps 6, 7, and 8.

10 Test each unit as it is implemented and fix any bugs.

11 Test the overall program and fix any bugs.

12 Once you have completed the project and are ready to submit it for grading, create a new set of
Javadoc files using Eclipse and inspect them to make sure your final design is properly documented in
your source code.

13 Submit your project (see Due Dates and Notes, below).

Extra Credit Features:

You may extend this project with more search features for an extra 5 points of credit. Think of ways to
enable a wider range of searches to be used, such as searching based on population or elevation or
regular expressions or wild cards. Alternatively, think of ways to decompose one of the region classes
into logical subclasses. You could also revise user interface elements. If you revise the user interface,
you must still read the file names from the keyboard and the geographic data from the text files.

To receive the full five points of extra credit, your extended feature must be novel (unique) and it must
involve effort in the design and integration of the feature into the project and the actual coding of the
feature. Also, you must indicate, on your final UML design, the portions of the design that support the
extra feature(s); and you must include a write-up of the feature(s) in your milestones file. The write-up
must indicate what the feature is, how it works, how it is unique, and the write-up must cite any outside
resources used. If you create any non-trivial units in your extra credit work, you must create appropriate
unit tests for them.

Due Dates and Notes:

The electronic copy of your preliminary design (UML, stub code, detailed Javadoc documentation, and
unit tests) is due on Wednesday, March 5th. Submit the project archive following the steps given in the
submission instructions by 10:00pm. Submit your UML design on engineering paper or a hardcopy

CS 2334 Spring 2014 7

using UML layout software at the beginning of lab on Thursday, March 6th.

The electronic copy of the final version of the project is due on Wednesday, March 26th. Submit the
project archive following the steps given in the submission instructions by 10:00pm. Submit your final
UML design on engineering paper or a hardcopy using UML layout software at the beginning of lab on
Thursday, March 27th.

You are not allowed to use the StringTokenizer class. Instead you must use String.split() and a
regular expression that specifies the delimiters you wish to use to “tokenize” or split each line of the file.

You may write your program from scratch or may start from programs for which the source code is
freely available on the web or through other sources (such as friends or student organizations). If you do
not start from scratch, you must give a complete and accurate accounting of where all of your code came
from and indicate which parts are original or changed, and which you got from which other source.
Failure to give credit where credit is due is academic fraud and will be dealt with accordingly.

As noted in the syllabus, you are required to work on this programming assignment in a group of at least
two people. It is your responsibility to find other group members and work with them. The group
should turn in only one (1) hard copy and one (1) electronic copy of the assignment. Both the electronic
and hard copies should contain the names and student ID numbers of all group members on the cover
sheet. If your group composition changes during the course of working on this assignment (for example,
a group of five splits into a group of two and a separate group of three), this must be clearly indicated in
your cover sheet, including the names and student ID numbers of everyone involved and details of when
the change occurred and who accomplished what before and after the change.

Each group member is required to contribute equally to each project, as far as is possible. You must
thoroughly document which group members were involved in each part of the project. For example, if
you have three methods in your program and one method was written by group member one, the second
was written by group member two, and the third was written jointly and equally by group members three
and four, your cover sheet must clearly indicate this division of labor. Giving improper credit to group
members is academic misconduct and grounds for penalties in accordance with school policies.

When zipping your project (or design) for submission, be sure to follow the instructions carefully.
In particular, before zipping the project be sure to

• place additional files (such as UML diagrams, cover sheets, and milestones files) within the
“docs” directory inside your Eclipse folder for the given project and be sure that Eclipse
sees these files (look in the Package Explorer and hit Refresh if necessary), and

• compress all files into a .zip format. The formats .rar and .7z will no longer be accepted.
Also, when submitting the initial design make sure that the UML is in one of the following
formats: .png .jpg or .pdf. Custom formats such as .uml or .dia are NOT acceptable. If you
are unsure how to export the file in that format, take a screen-shot of the diagram and
attach that.

CS 2334 Spring 2014 8

