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Inference Rules: Propositional Calculus 
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Some Theorems in Rule Form 

a       ¬a {+&-} 
   False 

NeverBoth 

¬(a ∨ b) 
{¬(∨)Comm} 
¬(b ∨ a) 

Not Or Commutes 
 a → b      ¬b 
{modTol} 
        ¬a 

Modus Tollens 

a ∨ b 
 {∨Comm} 
b ∨ a 

Or Commutes 

a ∧ b 
{∧Comm} 
b ∧ a 

And Commutes 

a→b     b→c 
{→Chain} 
     a→c 

Implication Chain Rule 

{noMiddle} 
  a ∨ (¬a) 

Law of Excluded Middle 

   a → b 
{conPosF} 
(¬b)→(¬a) 

Contrapositive Fwd 

(¬a) ∨ b 
{→B} 
   a → b 
Implication Bkw 

  a → b 
{→F} 
(¬a) ∨ b 
Implication Fwd 
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More Theorems in Rule Form 

¬(a ∧ b) 
{DeM∧F} 
(¬a)∨(¬b) 

DeMorgan And Fwd 

¬(a ∨ b) 
{DeM∨F} 
(¬a)∧(¬b) 

DeMorgan Or Fwd 

(¬a)∧(¬b) 
{DeM∨B} 
¬(a ∨ b) 

DeMorgan Or Bkw 

a ∨ b     ¬a  
{disjSyll} 
        b 

Disjunctive Syllogism 

(¬a)∨(¬b) 
{DeM∧B} 
 ¬(a ∧ b) 

DeMorgan And Bkw 

¬(¬a) 
{¬ ¬F} 
    a 

Double Negation Fwd 

     a 
{¬ ¬B} 
¬(¬a) 

Double Negation Bkw 



a ∧ False = False         {∧ null} 
a ∨ True = True         {∨ null} 
a ∧ True = a         {∧ identity} 
a ∨ False = a         {∨ identity} 
a ∧ a = a         {∧ idempotent} 
a ∨ a = a         {∨ idempotent} 
a ∧ b = b  ∧ a         {∧ commutative} 
a ∨ b = b ∨ a          {∨ commutative} 
(a ∧ b) ∧ c = a ∧ (b ∧ c)        {∧ associative} 
(a ∨ b) ∨ c = a ∨ (b ∨ c)        {∨ associative} 
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)  {∧ distributes over ∨} 
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)  {∨ distributes over ∧} 
¬(a ∧ b) = (¬ a) ∨ (¬ b)        {DeMorgan's law ∧} 
¬(a ∨ b) = (¬ a) ∧ (¬ b)        {DeMorgan's law ∨} 
¬True = False         {negate True} 
¬False = True         {negate False} 
(a ∧ (¬ a)) = False        {∧ complement} 
(a ∨ (¬ a)) = True              {∨ complement} 
¬(¬ a) = a         {double negation} 
(a ∧ b) → c = a → (b → c)       {Currying} 
a → b = (¬ a) ∨ b        {implication} 
a → b = (¬ b) → (¬ a)        {contrapositive} 

 (a ∧ b) ∨ b = b             {∨ absorption} 
 (a ∨ b) ∧ b = b             {∧ absorption} 
 (a ∨ b) → c  = (a → c) ∧ (b → c)  {∨ imp} 

Some Equations of 
Boolean Algebra 

Axioms 
Theorems 
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((∀x.f(x)) ∧ q) = ((∀x.(f(x) ∧ q))   {∧ dist over ∀} 
((∀x.f(x)) ∨ q) = ((∀x.(f(x) ∨ q))   {∨ dist over ∀} 
((∃x.f(x)) ∧ q) = ((∃x.(f(x) ∧ q))   {∧ dist over ∃} 
((∃x.f(x)) ∨ q) = ((∃x.(f(x) ∨ q))   {∨ dist over ∃} 

Equations of Predicate Calculus 

(∀x. f(x)) = (∀y. f(y))     {∀R} 
(∃x. f(x)) = (∃y. f(y))     {∃R} 

(∀x. f(x)) → f(c)     {7.3} 
f(c) → (∃x. f(x))     {7.4} 
(∀x. ¬f(x)) = (¬(∃x. f(x)))    {deM ∃} 
(∃x. ¬f(x)) = (¬(∀x. f(x)))    {deM ∀} 

(∀x.(f(x) ∧ g(x))) = ((∀x.f(x)) ∧ (∀x.g(x)))  {∀ dist over ∧} 
((∀x.f(x)) ∨ (∀x.g(x))) → (∀x.(f(x) ∨ g(x)))  {7.12} 
((∃x.f(x)) ∧ (∃x.g(x))) → (∃ x.(f(x) ∧ g(x)))  {7.13} 
(∃x.(f(x) ∨ g(x))) = ((∃x.f(x)) ∨ (∃x.g(x)))  {∃ dist over ∨} 

y not free in f(
x) and 

x not free in f(
y) 
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Inductive Equations (axioms) and Some Theorems 
sum :: Num n => [n] -> n
sum(x: xs) = x + sum xs      sum : 
sum[ ] = 0        sum[ ] 
Theorem: sum = foldr (+) 0     sum.foldr 
length :: [a] -> Int 
length(x: xs) = 1 + length xs           length.: 
length[ ] = 0       length.[ ] 
Theorem: length = foldr oneMore 0    length.foldr 
(++) :: [a] -> [a] -> [a] 
(x: xs) ++ ys = x: (xs ++ ys)           ++ : 
[ ] ++ ys = ys       ++[ ] 
Theorem: xs ++ ys = foldr (:) ys xs    ++.foldr 
Theorem: length(xs ++ ys) = (length xs) + (length ys)  ++.additive 
Theorem: ((xs ++ ys) ++ zs) = (xs ++ (ys ++ zs))  ++.assoc 
concat :: [[a]] -> [a] 
concat(xs: xss) = xs ++ concat xss          concat.: 
concat[ ] = [ ]       concat.[ ] 
Theorem: concat = foldr (++) [ ]    concat.foldr 
(x: [ ]) = [x]       :[ ] 
(xs ≠ [ ] )  =  (∃x. ∃ys. (xs = (x: ys)))    (:) 
( x : [x1, x2, …] )  =  [x, x1, x2, …]    (: …) 
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Patterns of Computation 
Pattern: foldr (⊕) z [x1, x2, …, xn-1, xn ] = x1 ⊕ ( x2 ⊕ … (xn-1 ⊕ ( xn ⊕ z))… ) 

foldr :: (a -> b -> b) -> b -> [a] -> b 
foldr (⊕) z (x: xs) = x ⊕ foldr (⊕) z xs    --foldr: 
foldr (⊕) z [ ] = z       --foldr[ ] 

Pattern: map  f  [x1, x2, … xn] = [f x1, f x2, … f xn] 
map :: (a -> b) -> [a] -> [b] 
map f (x : xs) = (f x) : map f xs     --map: 
map f [ ] = [ ]       --map[ ] 

Pattern: zipWith  b [x1, x2, … xn] [y1, y2, … yn] =[b x1 y1, b x2 y2, … b xn yn]
  Note: extra elements in either sequence are dropped 

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] 
zipWith b (x:xs) (y:ys) = (b x y): (zipWith b xs ys)  --zipW: 
zipWith b [ ]  ys = [ ]      --zipW[ ]L 
zipWith b xs  [ ] = [ ]      --zipW[ ]R 

Pattern: iterate  f  x = [x, f x, f(f x), f(f(f x)), …] 
iterate :: (a -> a) -> a -> [a] 
iterate f x =  x : (iterate f (f x))     --iterate 
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Predicates, Quantifiers, and Variables 
 Predicate – parameterized collection of propositions 

  P(x) is a proposition from predicate P 
  x comes from the universe of discourse, which must be specific 

 ∀x.P(x) – ∀ quantifier converts predicate to proposition 
  False if and only if there is some x for which P(x) is False 

 ∃x.P(x) – ∀ quantifier converts predicate to proposition 
  True if and only if there is some x for which P(x) is True 

 Free and bound variables in predicate calculus formulas 
  Bound variable 

 ∀x. e  x is bound in the formula  ∀x. e 
 ∃x. e   x is bound in the formula  ∃x. e 

  Free variables are variables that are not bound 
 Arbitrary variables in proofs 

  A free variable in a predicate calculus formula is arbitrary in a 
proof if it does not occur free in any undischarged assumption 
of that proof 



Strong Induction 

∀n.((∀m<n.P(m))→P(n)) 
{StrInd} 
        ∀n.P(n) 
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Inference Rules: Predicate Calculus and Induction 
∀x. F(x)      {y not in F(x)} 
{∀R}  
               ∀y. F(y) 

∃x. F(x)      {y not in F(x)} 
{∃R}  
              ∃y. F(y) 

F(x) {x arbitrary} 
{R}  
       F(y) 

∃x. F(x)     F(x) |– A {x not free in A}  
{∃E} 
                          A 

∀x. F(x)  {universe is not empty} 
{∀E} 
                   F(x) 

F(x) {x arbitrary} 
{∀I}  
       ∀x. F(x) 

    F(x) 
{∃I}  
 ∃x. F(x) 

P(0)   ∀n.(P(n)→P(n+1)) 
{Ind} 
        ∀n.P(n) 

Induction 
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Principle of Mathematical Induction 
another way to skin a cat 

 {∀I} — an inference rule 
 with ∀n. P(n) as it’s conclusion 

P(0)    ∀n.P(n)→P(n+1) 
{Ind} 
        ∀n. P(n) 

Induction 

 One way to use {∀I} 
  Prove P(0) 
  Prove P(n +1) for arbitrary n 

 Takes care of P(1), P(2), P(3), …  

 Mathematical induction makes it easier 
  Proof of P(n +1) can cite P(n) as a reason 

 If you cite P(n) as a reason in proof of P(n+1),          
your proof relies on mathematical induction 

 If you don’t, your proof relies on {∀I} 
  Strong induction makes it even easier 

 The proof of P(n+1) can cite P(n), P(n-1), … and/or P(0) 

   P(n) {n arbitrary} 
{∀I} 
       ∀n. P(n) 

∀ Introduction 



11 

Haskell Type Specifications 
  x, y, z :: Integer   -- x, y, and z have type Integer  
  xs, ys :: [Integer]   -- sequences with Integer elements 
  xy :: (Integer, Bool)  -- 2-tuple with 1st component Integer, 2nd Bool 
  or :: [Bool] -> Bool   -- function with one argument   

        argument is sequence with Bool elems  
             delivers value of type Bool 

  (++) :: [e] -> [e] -> [e]  -- generic function with two arguments  
                    args are sequences with elems of same type
           type is not constrained (can be any type)
        delivers sequence with elements of  
           same type as those in arguments 

  sum :: Num n => [n] -> n  -- generic function with one argument  
        argument is a sequence with elems of type n
            n must a type of class Num   
        Num is a set of types with +, *, … operations 

  powerSet :: (Eq e, Show e) => Set e -> Set(Set e)    
    -- generic function with one argument  
        argument is a set with elements of type e
        delivers set with elements of type (Set e)
        type e must be both class Eq and class Show
        Class Eq has == operator, Show displayable 


