
1

Inference Rules: Propositional Calculus

2

Some Theorems in Rule Form

a ¬a {+&-}
 False

NeverBoth

¬(a ∨ b)
{¬(∨)Comm}
¬(b ∨ a)

Not Or Commutes
 a → b ¬b
{modTol}
 ¬a

Modus Tollens

a ∨ b
 {∨Comm}
b ∨ a

Or Commutes

a ∧ b
{∧Comm}
b ∧ a

And Commutes

a→b b→c
{→Chain}
 a→c

Implication Chain Rule

{noMiddle}
 a ∨ (¬a)

Law of Excluded Middle

 a → b
{conPosF}
(¬b)→(¬a)

Contrapositive Fwd

(¬a) ∨ b
{→B}
 a → b
Implication Bkw

 a → b
{→F}
(¬a) ∨ b
Implication Fwd

3

More Theorems in Rule Form

¬(a ∧ b)
{DeM∧F}
(¬a)∨(¬b)

DeMorgan And Fwd

¬(a ∨ b)
{DeM∨F}
(¬a)∧(¬b)

DeMorgan Or Fwd

(¬a)∧(¬b)
{DeM∨B}
¬(a ∨ b)

DeMorgan Or Bkw

a ∨ b ¬a
{disjSyll}
 b

Disjunctive Syllogism

(¬a)∨(¬b)
{DeM∧B}
 ¬(a ∧ b)

DeMorgan And Bkw

¬(¬a)
{¬ ¬F}
 a

Double Negation Fwd

 a
{¬ ¬B}
¬(¬a)

Double Negation Bkw

a ∧ False = False {∧ null}
a ∨ True = True {∨ null}
a ∧ True = a {∧ identity}
a ∨ False = a {∨ identity}
a ∧ a = a {∧ idempotent}
a ∨ a = a {∨ idempotent}
a ∧ b = b ∧ a {∧ commutative}
a ∨ b = b ∨ a {∨ commutative}
(a ∧ b) ∧ c = a ∧ (b ∧ c) {∧ associative}
(a ∨ b) ∨ c = a ∨ (b ∨ c) {∨ associative}
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) {∧ distributes over ∨}
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) {∨ distributes over ∧}
¬(a ∧ b) = (¬ a) ∨ (¬ b) {DeMorgan's law ∧}
¬(a ∨ b) = (¬ a) ∧ (¬ b) {DeMorgan's law ∨}
¬True = False {negate True}
¬False = True {negate False}
(a ∧ (¬ a)) = False {∧ complement}
(a ∨ (¬ a)) = True {∨ complement}
¬(¬ a) = a {double negation}
(a ∧ b) → c = a → (b → c) {Currying}
a → b = (¬ a) ∨ b {implication}
a → b = (¬ b) → (¬ a) {contrapositive}

 (a ∧ b) ∨ b = b {∨ absorption}
 (a ∨ b) ∧ b = b {∧ absorption}
 (a ∨ b) → c = (a → c) ∧ (b → c) {∨ imp}

Some Equations of
Boolean Algebra

Axioms
Theorems

4

5

((∀x.f(x)) ∧ q) = ((∀x.(f(x) ∧ q)) {∧ dist over ∀}
((∀x.f(x)) ∨ q) = ((∀x.(f(x) ∨ q)) {∨ dist over ∀}
((∃x.f(x)) ∧ q) = ((∃x.(f(x) ∧ q)) {∧ dist over ∃}
((∃x.f(x)) ∨ q) = ((∃x.(f(x) ∨ q)) {∨ dist over ∃}

Equations of Predicate Calculus

(∀x. f(x)) = (∀y. f(y)) {∀R}
(∃x. f(x)) = (∃y. f(y)) {∃R}

(∀x. f(x)) → f(c) {7.3}
f(c) → (∃x. f(x)) {7.4}
(∀x. ¬f(x)) = (¬(∃x. f(x))) {deM ∃}
(∃x. ¬f(x)) = (¬(∀x. f(x))) {deM ∀}

(∀x.(f(x) ∧ g(x))) = ((∀x.f(x)) ∧ (∀x.g(x))) {∀ dist over ∧}
((∀x.f(x)) ∨ (∀x.g(x))) → (∀x.(f(x) ∨ g(x))) {7.12}
((∃x.f(x)) ∧ (∃x.g(x))) → (∃ x.(f(x) ∧ g(x))) {7.13}
(∃x.(f(x) ∨ g(x))) = ((∃x.f(x)) ∨ (∃x.g(x))) {∃ dist over ∨}

y not free in f(
x) and

x not free in f(
y)

6

Inductive Equations (axioms) and Some Theorems
sum :: Num n => [n] -> n
sum(x: xs) = x + sum xs sum :
sum[] = 0 sum[]
Theorem: sum = foldr (+) 0 sum.foldr
length :: [a] -> Int
length(x: xs) = 1 + length xs length.:
length[] = 0 length.[]
Theorem: length = foldr oneMore 0 length.foldr
(++) :: [a] -> [a] -> [a]
(x: xs) ++ ys = x: (xs ++ ys) ++ :
[] ++ ys = ys ++[]
Theorem: xs ++ ys = foldr (:) ys xs ++.foldr
Theorem: length(xs ++ ys) = (length xs) + (length ys) ++.additive
Theorem: ((xs ++ ys) ++ zs) = (xs ++ (ys ++ zs)) ++.assoc
concat :: [[a]] -> [a]
concat(xs: xss) = xs ++ concat xss concat.:
concat[] = [] concat.[]
Theorem: concat = foldr (++) [] concat.foldr
(x: []) = [x] :[]
(xs ≠ []) = (∃x. ∃ys. (xs = (x: ys))) (:)
(x : [x1, x2, …]) = [x, x1, x2, …] (: …)

7

Patterns of Computation
Pattern: foldr (⊕) z [x1, x2, …, xn-1, xn] = x1 ⊕ (x2 ⊕ … (xn-1 ⊕ (xn ⊕ z))…)

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr (⊕) z (x: xs) = x ⊕ foldr (⊕) z xs --foldr:
foldr (⊕) z [] = z --foldr[]

Pattern: map f [x1, x2, … xn] = [f x1, f x2, … f xn]
map :: (a -> b) -> [a] -> [b]
map f (x : xs) = (f x) : map f xs --map:
map f [] = [] --map[]

Pattern: zipWith b [x1, x2, … xn] [y1, y2, … yn] =[b x1 y1, b x2 y2, … b xn yn]
 Note: extra elements in either sequence are dropped

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith b (x:xs) (y:ys) = (b x y): (zipWith b xs ys) --zipW:
zipWith b [] ys = [] --zipW[]L
zipWith b xs [] = [] --zipW[]R

Pattern: iterate f x = [x, f x, f(f x), f(f(f x)), …]
iterate :: (a -> a) -> a -> [a]
iterate f x = x : (iterate f (f x)) --iterate

8

Predicates, Quantifiers, and Variables
 Predicate – parameterized collection of propositions

  P(x) is a proposition from predicate P
  x comes from the universe of discourse, which must be specific

 ∀x.P(x) – ∀ quantifier converts predicate to proposition
  False if and only if there is some x for which P(x) is False

 ∃x.P(x) – ∀ quantifier converts predicate to proposition
  True if and only if there is some x for which P(x) is True

 Free and bound variables in predicate calculus formulas
  Bound variable

 ∀x. e x is bound in the formula ∀x. e
 ∃x. e x is bound in the formula ∃x. e

  Free variables are variables that are not bound
 Arbitrary variables in proofs

  A free variable in a predicate calculus formula is arbitrary in a
proof if it does not occur free in any undischarged assumption
of that proof

Strong Induction

∀n.((∀m<n.P(m))→P(n))
{StrInd}
 ∀n.P(n)

9

Inference Rules: Predicate Calculus and Induction
∀x. F(x) {y not in F(x)}
{∀R}
 ∀y. F(y)

∃x. F(x) {y not in F(x)}
{∃R}
 ∃y. F(y)

F(x) {x arbitrary}
{R}
 F(y)

∃x. F(x) F(x) |– A {x not free in A}
{∃E}
 A

∀x. F(x) {universe is not empty}
{∀E}
 F(x)

F(x) {x arbitrary}
{∀I}
 ∀x. F(x)

 F(x)
{∃I}
 ∃x. F(x)

P(0) ∀n.(P(n)→P(n+1))
{Ind}
 ∀n.P(n)

Induction

10

Principle of Mathematical Induction
another way to skin a cat

 {∀I} — an inference rule
 with ∀n. P(n) as it’s conclusion

P(0) ∀n.P(n)→P(n+1)
{Ind}
 ∀n. P(n)

Induction

 One way to use {∀I}
  Prove P(0)
  Prove P(n +1) for arbitrary n

 Takes care of P(1), P(2), P(3), …

 Mathematical induction makes it easier
  Proof of P(n +1) can cite P(n) as a reason

 If you cite P(n) as a reason in proof of P(n+1),
your proof relies on mathematical induction

 If you don’t, your proof relies on {∀I}
  Strong induction makes it even easier

 The proof of P(n+1) can cite P(n), P(n-1), … and/or P(0)

 P(n) {n arbitrary}
{∀I}
 ∀n. P(n)

∀ Introduction

11

Haskell Type Specifications
  x, y, z :: Integer -- x, y, and z have type Integer
  xs, ys :: [Integer] -- sequences with Integer elements
  xy :: (Integer, Bool) -- 2-tuple with 1st component Integer, 2nd Bool
  or :: [Bool] -> Bool -- function with one argument

 argument is sequence with Bool elems
 delivers value of type Bool

  (++) :: [e] -> [e] -> [e] -- generic function with two arguments
 args are sequences with elems of same type
 type is not constrained (can be any type)
 delivers sequence with elements of
 same type as those in arguments

  sum :: Num n => [n] -> n -- generic function with one argument
 argument is a sequence with elems of type n
 n must a type of class Num
 Num is a set of types with +, *, … operations

  powerSet :: (Eq e, Show e) => Set e -> Set(Set e)
 -- generic function with one argument
 argument is a set with elements of type e
 delivers set with elements of type (Set e)
 type e must be both class Eq and class Show
 Class Eq has == operator, Show displayable

