Inference Rules: Propositional Calculus

Some Theorems in Rule Form

$\frac{a \wedge b}{b \wedge a}\{\wedge C o m m\}$	$\frac{a \vee b}{b \vee a}\{v C o m m\}$	$\overline{a \vee(\neg a)}\{\text { noMiddle\} }$
And Commutes	Or Commutes	Law of Excluded Midd
$\underset{a \rightarrow c}{a \rightarrow b \quad b \rightarrow c}\{\rightarrow \text { Chain }\}$	$\underset{\neg(b \vee a)}{\neg(a \vee b)}\{\neg(v) \text { Comm }\}$	
Implication Chain Rule	Not Or Commutes	
$\left.\underset{\neg a}{a \rightarrow b} \quad \neg b \operatorname{modTo}^{a \rightarrow}\right\}$	$\left.\begin{array}{c} a \rightarrow b \\ (\neg b) \rightarrow(\neg a) \end{array} \text { conPos }_{F}\right\}$	
Modus Tollens		rapositive Fwd
NeverBoth	$\underset{\text { Implication Fwd }}{\frac{\mathrm{a} \rightarrow \mathrm{a}}{(\neg a) \vee b}\left\{\rightarrow_{F}\right\}} \quad \underset{\text { Implication Bkw }}{\frac{(\neg a) \vee b}{a \rightarrow b}\left\{\rightarrow_{B}\right\}}$	

More Theorems in Rule Form

$$
\frac{\neg(a \vee b)}{(\neg a) \wedge(\neg b)}\left\{D e M v_{F}\right\}
$$

DeMorgan Or Fwd

$$
\frac{\neg(a \wedge b)}{(\neg a) \vee(\neg b)}\left\{D e M \wedge_{F}\right\}
$$

DeMorgan And Fwd

Disjunctive Syllogism

$$
\frac{(\neg a) \wedge(\neg b)}{\neg(a \vee b)}\left\{D e M v_{B}\right\}
$$

DeMorgan Or Bkw

$$
\frac{(\neg a) v(\neg b)}{\neg(a \wedge b)}\left\{D e M \wedge_{B}\right\}
$$

DeMorgan And Bkw

$$
\frac{\neg(\neg a)}{a}\left\{\neg \neg_{F}\right\}
$$

Double Negation Fwd

$$
\frac{a}{\neg(\neg a)}\left\{\neg \neg_{B}\right\}
$$

Double Negation Bkw

```
a}\wedge\mathrm{ False = False {^ null}
a v True = True
a ^ True = a
a \vee False=a
a^a=a
a\veea=a
a}\wedgeb=b ^a
a}\veeb=b\vee
(a\wedgeb)\wedgec=a^(b\wedgec)
(a\veeb)\veec=a\vee(b\veec)
a\wedge(b\veec)=(a\wedgeb)\vee (a\wedgec){
a\vee (b\wedgec)=(a\veeb) ^(a\veec)
\neg(a\wedgeb)=(\nega)\vee(\negb)
\neg(a\veeb) =(\nega) ^(\negb)
\negTrue = False
\negFalse = True
(a}\wedge(\nega))=F\mathrm{ False
(a \vee (\nega)) = True
\neg(\nega)=a
(a\wedgeb) }->c=a->(b->c
a}->\textrm{b}=(\neg\textrm{a})\vee\textrm{b
a}->\textrm{b}=(\neg\textrm{b})->(\nega
Axioms
```

\{^ nul\}
\{v null\}
\{^ identity\}
\{v identity\}
\{^ idempotent\}
\{v idempotent $\}$
\{ \wedge commutative $\}$

Some Equations of Boolean Algebra

\{v commutative $\}$
\{^ associative\}
\{v associative $\}$
$\{\wedge$ distributes over v\}
$\{\vee$ distributes over $\wedge\}$
$\{D e M o r g a n ' s ~ l a w ~ \wedge\}$
\{DeMorgan's law v\}
\{negate True\}
\{negate False\}
\{ \wedge complement\}
\{v complement\}
\{double negation\}
\{Currying\}
\{implication\}
\{contrapositive\}

Theorems

$$
\begin{array}{ll}
(\mathbf{a} \wedge \mathbf{b}) \vee \mathbf{b}=\mathbf{b} \\
(\mathbf{a} \vee \mathbf{b}) \wedge \mathbf{b}=\mathbf{b} & \{\vee \text { absorption }\} \\
(\mathbf{a} \vee \mathbf{b}) \rightarrow \mathbf{c}=(\mathbf{a} \rightarrow \mathbf{c}) \wedge(\mathbf{b} \rightarrow \mathbf{c}) & \{\vee \text { absorption }\} \\
\{\vee \text { imp }\}
\end{array}
$$

Equations of Predicate Calculus

Inductive Equations (axioms) and Some Theorems

 sum :: Num $n \Rightarrow$ [n] -> $n$$\operatorname{sum}(x: x s)=x+\operatorname{sum} x s$
sum[] = 0
Theorem: sum $=$ foldr (+) 0
length :: [a] -> Int
length $(x: x s)=1+$ length $x s$
length[] = 0
Theorem: length = foldr oneMore 0
(++) :: [a] -> [a] -> [a]
($x: x s$) ++ ys = $x:(x s++y s)$
[] ++ ys = ys
Theorem: xs ++ ys = foldr (:) ys xs
Theorem: length $(x s++y s)=($ length $x s)+($ length $y s)$
Theorem: $((x s++y s)++z s)=(x s++(y s++z s))$
concat :: [[a]] -> [a]
concat(xs: xss) = xs ++ concat xss
concat[] = []
Theorem: concat $=$ foldr $(++)$ []
$(x:[])=[x]$
$(x s \neq[])=(\exists x . \exists y s .(x s=(x: y s)))$
$\left(x:\left[x_{1}, x_{2}, \ldots\right]\right)=\left[x, x_{1}, x_{2}, \ldots\right]$
sum :
sum[]
sum.foldr
length.:
length.[]
length.foldr
++:
++ []
++ foldr
++.additive
$++. a s s o c$
concat.:
concat.[]
concat.foldr
:[]
(:)
(: ...)

Patterns of Computation

Pattern: foldr $(\oplus) z\left[x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right]=x_{1} \oplus\left(x_{2} \oplus \ldots\left(x_{n-1} \oplus\left(x_{n} \oplus z\right)\right) \ldots\right)$ foldr :: (a $\rightarrow \mathrm{b} \rightarrow \mathrm{b}) \rightarrow \mathrm{b} \rightarrow$ [a] $\rightarrow \mathrm{b}$ foldr $(\oplus) z(x: x s)=x \oplus$ foldr $(\oplus) z x s$
--foldr: foldr $(\oplus) z[]=z$
--foldr[]
Pattern: map $f\left[x_{1}, x_{2}, \ldots x_{n}\right]=\left[f x_{1}, f x_{2}, \ldots f x_{n}\right]$
map :: $(a \rightarrow b)->[a]->[b]$
$\operatorname{map} f(x: x s)=(f x): \operatorname{map} f x s$
$\operatorname{map} f[$] = []
--map:
--map[]
Pattern: zipWith $b\left[x_{1}, x_{2}, \ldots x_{n}\right]\left[y_{1}, y_{2}, \ldots y_{n}\right]=\left[b x_{1} y_{1}, b x_{2} y_{2}, \ldots b x_{n} y_{n}\right]$
Note: extra elements in either sequence are dropped zipWith :: $(a->b->c) \rightarrow[a]->[b]->[c]$ zipWith $b(x: x s)(y: y s)=(b \times y)$: (zipWith $b x s y s)$ zipWith b [] ys = []
--zipW: zipWith b xs [] = []
--zipW[]
--zipW[]
Pattern: iterate $f x=[x, f x, f(f x), f(f(f x)), \ldots]$
iterate :: (a-> a) -> $a->$ [a]
iterate $f x=x$: (iterate $f(f x)$)
--iterate

Predicates, Quantifiers, and Variables

\square Predicate - parameterized collection of propositions

- $P(x)$ is a proposition from predicate P
- x comes from the universe of discourse, which must be specific
$\square \forall x . P(x)-\forall$ quantifier converts predicate to proposition
- False if and only if there is some x for which $P(x)$ is False
$\square \exists x . P(x)-\forall$ quantifier converts predicate to proposition
- True if and only if there is some x for which $P(x)$ is True
\square Free and bound variables in predicate calculus formulas
- Bound variable
$\checkmark \forall x . e \quad x$ is bound in the formula $\forall x . e$
$\checkmark \exists x . e \quad x$ is bound in the formula $\exists x . e$
- Free variables are variables that are not bound
\square Arbitrary variables in proofs
- A free variable in a predicate calculus formula is arbitrary in a proof if it does not occur free in any undischarged assumption of that proof

Inference Rules: Predicate Calculus and Induction

Induction

$$
\left.\begin{array}{c}
P(0) \quad \forall n .(P(n) \rightarrow P(n+1)) \\
\hline \forall n . P(n)
\end{array} \text { Ind }\right\}
$$

$\frac{\forall n .((\forall m<n \cdot P(m)) \rightarrow P(n))}{\forall n \cdot P(n)}\{S t r I n d\}$
Strong Induction

Principle of Mathematical Induction

another way to skin a cat

$\square\{\forall I\}$ - an inference rule
with $\forall n . P(n)$ as it's conclusion
\square One way to use $\{\forall I\}$

- Prove P(0)
$\frac{P(n)\{n \text { arbitrary\} }}{\forall n . P(n)}\{\forall I\}$
\forall Introduction
- Prove $P(n+1)$ for arbitrary n \checkmark Takes care of $P(1), P(2), P(3), \ldots$
$\left.\begin{array}{cc}\mathrm{P}(0) \quad \forall n . P(n) \rightarrow P(n+1) \\ \hline \forall n . P(n)\end{array} I n d\right\}$

Induction
-Mathematical induction makes it easier

- Proof of $P(n+1)$ can cite $P(n)$ as a reason
\checkmark If you cite $P(n)$ as a reason in proof of $P(n+1)$, your proof relies on mathematical induction
\checkmark If you don't, your proof relies on $\{\forall I\}$
- Strong induction makes it even easier
\checkmark The proof of $P(n+1)$ can cite $P(n), P(n-1), \ldots$ and/or $P(0)$

Haskell Type Specifications

] x, y, z :: Integer
] xs,ys:: [Integer]
] xy :: (Integer, Bool)
] or :: [Bool] -> Bool
($(++$) :: [e] -> [e] -> [e]
$--x, y$, and z have type Integer
-- sequences with Integer elements
-- 2-tuple with $1^{\text {st }}$ component Integer, $2^{\text {nd }}$ Bool
-- function with one argument argument is sequence with Bool elems delivers value of type Bool
-- generic function with two arguments args are sequences with elems of same type type is not constrained (can be any type) delivers sequence with elements of
same type as those in arguments
\square sum :: Num $n=>[n]$-> n
-- generic function with one argument argument is a sequence with elems of type n n must a type of class Num
Num is a set of types with,$+ *$, ... operations
\square powerSet :: (Eq e, Show e) \Rightarrow Set e-> Set(Set e)
-- generic function with one argument argument is a set with elements of type e delivers set with elements of type (Set e) type e must be both class Eq and class Show Class Eq has == operator, Show displayable

