
Lab Exercise #6 – Menus, Toolbars, and Dialogs in MVC
Computer Science 2334

Due by: Friday, March 16, 2012, 11:30 am

Members:

Objectives:

1. To learn how to create a dialog box based on the JOptionPane class.
2. To learn how to create a menu system using JMenuItem, JMenu and JMenuBar.
3. To learn how to create a toolbar system using JToolBar.
4. To learn how the model, view, and controller interact in the Model, View, Controller design

pattern.
5. To demonstrate this knowledge by completing a series of exercises.

Instructions:

This lab exercise requires a laptop with an Internet connection. Once you have completed the exercises
in this document, your team will submit it for grading.

Make sure you read this lab description and look at all of the source code posted on the class website for
this lab exercise before you begin working.

Assignment:

Graphical User Interfaces using the Model, View, Controller (MVC) design pattern are an important
programming abstraction that shows how additional structure can be built from objects; it is also one
that will be used in future projects. Carefully inspect how it works and the documentation comments
included in the code.

1. Download the Lab6-eclipse.zip project archive from the class website. Import the project into
your Eclipse workspace using the slides from Lab #2. You will submit the modified project archive
when you are finished.

2. Review the source code for the Candidates class, which is a class for representing (some aspects
of) candidates. It is extended by the CandidatesModel class. This class is the data model for the
program. It extends the Candidates class by adding variables and methods, and by overriding
methods, in order to deal with the GUI. You will use methods provided in these classes to complete
the code for the lab. Note that this is the same data model used in Lab #5, except that candidates can
now have multiple electoral contest records listed for them.

3. Review the source code for the CandidatesInputWindow class, which is a class that presents a GUI
window to the user for adding new candidates to a candidate collection or for clearing out the
candidate collection. This window provides a view for the model data. Note that this is the same
view used in Lab #5.

CS 2334 Spring 2012 1

4. Read through the source code for the AddCandidatesListener class, which listens for the “Add
Candidate” button to be pressed in the CandidatesInputWindow. In Lab #6, this class may present a
GUI dialog for clarifying user intent when interacting with the CandidatesInputWindow. In Lab #5,
when a user entered an candidate with the same name as one already in the candidate collection, the
old entry would simply be replaced by the new entry. In Lab #6, when the user enters a candidate
with the same name as one already in the candidate collection, the user will be presented with a
dialog window that will ask him or her if the intent is really to replace the existing candidate or to add
a new contest results entry for the existing candidate. The user will also be given the option to cancel
the addition. All of these options will be presented using an object of the JOptionPane class, which is
a new addition for Lab #6. As you read through the source code for this class, note the “TODO:”
comments provided there that give hints as to what needs to be done in the program.

5. Is it necessary to create a JOptionPane instance? Why or why not? (Take into consideration the
fact that JOptionPane is modal.)

6. Within the actionPerformed() method of the AddCandidateListener class, use a JOptionPane

and create Strings for all of the information that is to be displayed to the user. These will include the
messages to the user and the labels for the buttons. These components should be added to the
JOptionPane.

7. Complete the actionPerformed() method of the AddCandidateListener class. If the user clicks
the “Replace Candidate” button, this method should save to the model all of the data entered into the
CandidatesInputWindow object, replacing the data that was already there by using a mutator method
provided by the data model. If the user clicks the “Add Record” button, this method should save to
the model the new yearly contest record entered into the CandidatesInputWindow object by using a
mutator method provided by the data model.

8. Compile the lab assignment with your modified CandidatesController class. You should not have
needed to modify any class other than the CandidatesController class thus far. At this point you
should be able to replace candidates and add to their contest records using your code. However, the
view will not know that the model has changed, so you may not see the updated information until you
take other actions, such as resizing the model or adding a candidate with a new name.
9. To correct the lack of updates to the view, look inside the CandidatesModel class. There you will
see some mutator methods from the Candidates class that have been overridden to inform their
listeners when mutation events have taken place. You should override any additional mutators
necessary to notify potential listeners of any data changes due to the additional code you added to the
CandidatesController class. When these mutators have been overridden appropriately, all changes to
the model should be immediately reflected in the view. Once you can see these immediate changes,
move on to the next step of building your menu system.

10. Create a menu item for each of the menu options “Load,” “Save,” and “Exit.” These are to be
added to the program under a “File” menu. The type of each menu item should be JMenuItem. These
objects should be initialized in the constructor of the class. The code for initializing each JMenuItem

CS 2334 Spring 2012 2

object will be similar to: JMenuItem jmiName = new JmenuItem(“Name”);

11. Should the references to these JMenuItem objects be stored as class variables or variables local to
a specific method? Briefly explain your answer. (In answering this question, consider which
variables will be referenced in the actionPerformed() method.)

12. Inside the constructor for the CandidatesInputWindow class you must also register each
ActionListener on the JMenuItem by calling addActionListener() on each JMenuItem object. The
CandidatesController class should be used as the class that implements the ActionListener interface.

13. Create a JMenu object for the “File” menu. Add each menu item to the “File” menu using the
add() method of JMenu. Create a JMenuBar object and add the “File” menu using the add() method
of JmenuBar. Add the JMenuBar to the CandidatesInputWindow.

14. In addition to the menu, we are going to implement a toolbar, using the JToolBar class. This
toolbar will give us a “Print” option. To create this, create a JToolBar by declaring and instantiating it
like you would any other GUI component. Then create a new JButton labeled “Print” and add it to
the toolbar by calling the toolbar’s add() method. Last, add the toolbar itself by calling add().

15. All of the menu items and the button in the toolbar should be connected to methods in the
Candidates class which conform to their names. You will need to add these methods (see Candidates
for details).

16. Ensure that there are no warnings generated for your code. Do not suppress warnings. Fix
your code so that warnings are not necessary. (If you can't figure out how to fix your code to avoid
the cast warning on the cloned actionListenerList, you may leave in that warning.)

17. Submit the project archive following the steps given in the Submission Instructions by March
16, 11:30 am through D2L (http://learn.ou.edu).

18. Turn in this lab handout (with completed answers) to your lab instructor during lab or by
bringing it to Professor Hougen’s office and sliding it under his office door .

CS 2334 Spring 2012 3

http://learn.ou.edu/

	Objectives:
	Instructions:
	Assignment:

