
Project #1
Computer Science 2334

Spring 2011

User Request:

“Create a simple place data system.”

Milestones:

1. Use program arguments to specify a file name. 10 points

2. Use simple File I/O to read a file. 10 points

3. Create an abstract data type (ADT) to store information on a single place. 15 points

4. Create an ADT that abstracts the use of an array of places (i.e., a list of places). 15 points

5. Implement a program that allows the user to search the place list as described below. 20 points

► Develop and use a proper design. 15 points

► Use proper documentation and formatting. 15 points

Description:

For this project, you will put together several techniques and concepts learned in CS 1323 and some new
techniques to make an application that searches a large collection of data on places (such as cities and
towns) which we will call an “place data system” or “PDS1.” This project creates a simple program that
allows users to enter the names of places and see the population of each place in particular years.

One of the best things about this project is that it will use lots of data. Your program must be capable of
handling data on over 10,000 places. To the surprise of no one, the best approach to this somewhat large
problem is to decompose the problem into separate classes that can be gradually built up. Note that
much of the code you write for this program could be reused in more complex applications, such as a
full-fledged census data system that also includes information on income, housing, and so forth.

Operational Issues:

Your program will read the place data file (a text file) as specified by a file name. The file name will be
given as a program argument. (See below for information on how to read program arguments). Each line
of the file contains a place name, followed by a comma, followed by a space, followed by a state
abbreviation (or similar), followed by a comma, followed by a space, followed by a population,
followed by a comma, followed by a year. For example:

Oklahoma City, OK, 1,227,278, 2009

You will need to store each place name and its associated data as a single object and the collection of all
places will be stored as a list of these objects.2

Once the place list has been read into your program and stored, your program will use a JOptionPane to
display to the user a dialog box requesting an input name.

1. Not to be confused with a particularly dangerous situation (PDS) watch issued by the Storm Prediction Center.
2. If you are wondering about the population given, it is for the “metropolitan statistical area,” not the city proper.

CS 2334 Spring 2011 1

When the user enters a name into the dialog, your program will search for it in the place list. If the name
is in the list, your program will use another dialog to inform the user of that fact along with that place’s
data. If the name appears in the list multiple times, all of the data associated with that name will be
displayed. If the name is not in the list, your program will use a dialog to inform the user of that fact.

After checking whether the name is in the place list and informing the user one way or the other, your
program will again use a dialog to request a place name. It will continue in this loop until the user clicks
on cancel, at which time the program should gracefully exit.

Implementation Issues:

There are two Java elements in this project that may be new to some students: reading from a file and
program arguments. These Java features are summarized below.

Reading from a file:

We will discuss File I/O in more depth later in the class, this project is just designed to give you a brief
introduction to the technique. Reading files is accomplished in Java using a collection of classes in the
java.io package. To use the classes you must import the following package:

import java.io.IOException;

The first action is to open the file. This associates a variable in the program with the name of the file
sitting on the disk.

String fileName = "PlaceList.txt";
FileReader fr = new FileReader(fileName);

Next the FileReader is wrapped with a BufferedReader. A BufferedReader is more efficient than a
FileReader since a BufferedReader saves groups of characters during a single operation instead of
working with characters individually. Another advantage of using a BufferedReader is that there is a
command to read an entire line of the file, instead of a single character at a time. This feature comes in
particularly handy for this project.

BufferedReader br = new BufferedReader(fr);

The BufferedReader can now read in Strings.

String nextline;
nextline = br.readLine();

Look at the Java API listing for BufferedReader and find out what readLine() returns when it
encounters the end of the file (stream). When you are finished with the BufferedReader, the file should
be closed. This informs the operating system that you’re finished using the file.

br.close();

Closing the BufferedReader also closes the FileReader.

Any method which performs I/O will have to throw or catch an IOException. If it is not caught, then it
must be passed to the the calling method. The syntax is given below:

public void myMethod(int argument) throws IOException {
 //method body here
}

CS 2334 Spring 2011 2

Program Arguments:

Sometimes it is handy to be able to give a program some input when it first starts executing. Program
arguments can fulfill this need. Program arguments in Eclipse are equivalent to MS-DOS or Unix
command line arguments. Program arguments are handled in Java using a String array that is
traditionally called args (the name is actually irrelevant). See the slides from Lab #2 for how to supply
program arguments in Eclipse.

The program below will print out the program arguments.

public static void main(String[] args) {
 System.out.println(args.length + " program arguments:");
 for (int i=0; i< args.length; i++)
 System.out.println("args[" + i + "] = " + args[i]);
}

Milestones:

A milestone is a “significant point in development.” In other words, milestones serve to guide you in the
development of your project. Listed below are a set of milestones for this project along with a brief
description of each.

Milestone 1. Use program arguments to specify a file name.

The name of the file that stores the list of place data will be passed to the program using program
arguments as discussed above. Type in the sample program given in the section on program arguments
and make sure that you understand how the program arguments you provide affect the String[] args
parameter that is passed into the main method of the program. Then, write a main method for your
program that reads in the name of the data file from the program arguments.

Milestone 2. Use simple File I/O to read a file.

Before you can allow the user to search the place list, you must first be able to read a text file. Examine
the section above on reading from a file. A good start to the program is to be able to read in the name of
a file from the program arguments, read each line from the file, one at a time, and print each line to the
console using System.out.println(). Later, you will want to remove the code that prints out each line
read in from the file, since the project requirements do not specify that the file is to be written out to the
console as it is read.

Milestone 3. Create an abstract data type (ADT) to store data on a single place.

You must create a class that holds the place data for a single place in the data file before you can store
that data. Think about what data is associated with each place and how to most efficiently store the data.
Also, think about any methods that may help you to manage and compare the data by abstracting
operations to be performed on individual entries in the list. Such methods may be used by other classes.

Milestone 4. Create an ADT that abstracts the use of a list of place data.

You are to store the object representing each place into a list of objects. However, it is not necessary for
the portions of the program that will carry out user actions to directly operate on this list as they would if
you simply used an array of place objects. Instead, you should create a class that abstracts and
encapsulates this list and allows for the addition of new places and also supports the required search
operations on it.

CS 2334 Spring 2011 3

This class will represent the collection of information associated with the program. Think about the
operations that this class needs to support and how it will use the ADT created for Milestone 3. At this
point, you should be able to read in the input file and create an object for each place in the file, and store
that object into the list. Note that the data file used for grading may be larger (or smaller) than the data
file provided for testing.

Milestone 5. Implement a program that allows the user to search the place list as described below.

This is where the entire program starts to take on its final form and come together. Here you will create
the input and output dialogs and the menu system. Start by creating the input dialogs and the output
dialogs. Tie together the input dialogs, the ADT from Milestone 4, and the output dialogs to make this
search functional and test its functionality.

Finally, you are ready to create the main loop of the program that will take input and invoke the correct
methods to create appropriate output.

Remember that when the user clicks on “cancel,” the program must gracefully exit. This can be
accomplished by using System.exit(0).

How to Complete this Project:

Preliminary Design:

 1 During the lab session and in the week following, you should work with your partner(s) to determine
the classes, variables, and methods needed for this project and their relationship to one another. This
will be your preliminary design for your software.

 1.1 Be sure to look for nouns in the project description. More important nouns describing the
items of interest to the “customer” should probably be incorporated into your project as classes and
objects of those classes. Less important nouns should probably be incorporated as variables of the
classes/objects just described.

 1.2 Be sure to look for verbs in the project description. Verbs describing behaviors of the desired
objects and the systems as a whole should probably be incorporated into your project as methods.

 1.3 Be sure to use UML class diagrams as tools to help you with the design process.

 2 Once you have completed your UML design, create Java “stub code” for the classes and methods
specified in your design. Stub code is the translation of UML class diagrams into code. It will contain
code elements for class, variable, and method names; relationships between classes such as inheritance,
composition, and aggregation as appropriate; variable types; and method signatures. Stub code does not,
however, contain method bodies. Because we are using object-oriented design, in which the inner
workings of one class are largely irrelevant to the classes with which it interfaces (that is, we are using
encapsulation), we do not need to complete the implementation of the classes until the design is
completed.

 3 Add comments to your stubbed code as specified in the documentation requirements posted on the
class website. Run your commented stubbed code through Javadoc as described in the Lab #2 slides.
This will create a set of HTML files in a directory named “docs” under your project directory.

 4 At the end of the first week, you will turn in your preliminary design documents (see Due Dates and
Notes, below), which the TA will grade and return to you with helpful feedback on your preliminary
design. Please note: You are encouraged to work with the instructor and the TAs during their office
hours during the design week to get feedback throughout the design process as needed.

CS 2334 Spring 2011 4

Final Design and Completed Project

 5 Using feedback from the instructor and TAs as well as your own (continually improving)
understanding of OO design, revise your preliminary UML design.

 6 Make corresponding changes to your stub code, including its comments.

 7 Implement the design you have developed by coding each method you have defined. A good
approach to the implementation of your project is to follow the project's milestones in the order they
have been supplied. If you find that your design does not allow for the implementation of all methods,
repeat steps 5 and 6.

 8 Test your program and fix any bugs.

 9 Once you have completed the project and are ready to submit it for grading, create a new set of
Javadoc files using Eclipse and inspect them to make sure your final design is properly documented in
your source code.

Extra Credit Features:

You may extend this project with more search features for an extra 5 points of credit. Think of ways to
enable a wider range of searches to be used, such as searching based on state or year or population range
or regular expression or wild cards. Alternatively, think of ways to decompose the class for place data
into logical subclasses. You could also revise user interface elements. If you revise the user interface,
you must still read the file name from the program arguments and the place list from the text file.

To receive the full five points of extra credit, your extended feature must be novel (unique) and it must
involve effort in the design and integration of the feature into the project and the actual coding of the
feature. Also, you must indicate, on your final UML design, the portions of the design that support the
extra feature(s); and you must include a write-up of the feature(s) in your milestones file. The write-up
must indicate what the feature is, how it works, how it is unique, and the write-up must cite any outside
resources used.

Due Dates and Notes:

The electronic copy of your preliminary design (UML, stub code, and detailed Javadoc documentation)
is due on Wednesday, February 9th. Submit the project archive following the steps given in the
submission instructions by 9:00pm. Submit your revised UML design on engineering paper or a
hardcopy using UML layout software and a hardcopy of the stubbed source code at the beginning of lab
on Thursday, February 10th.

The electronic copy of the final version of the project is due on Wednesday, February 16th. Submit the
project archive following the steps given in the submission instructions by 9:00pm. Submit your final
UML design on engineering paper or a hardcopy using UML layout software and a hardcopy of the
source code at the beginning of lab on Thursday, February 17th.

You are not allowed to use the StringTokenizer class. Instead you must use String.split() and a
regular expression that specifies the delimiters you wish to use to “tokenize” or split each line of the file.

You may write your program from scratch or may start from programs for which the source code is
freely available on the web or through other sources (such as friends or student organizations). If you do
not start from scratch, you must give a complete and accurate accounting of where all of your code came
from and indicate which parts are original or changed, and which you got from which other source.
Failure to give credit where credit is due is academic fraud and will be dealt with accordingly.

CS 2334 Spring 2011 5

ADTs

Do not be confused by the term “abstract data type” (ADT). An ADT is not the same as an abstract
class, even though they both contain the word “abstract” in them.

A data type is simply a description of how bits in a computer are grouped and interpreted Maybe one set
of 32 bits is interpreted as a character, whereas another set of 32 bits is interpreted as an integer, and a
set of 64 other bits is interpreted as an integer that can hold larger magnitudes, etc. With concrete data
types, implementation details matter, such as the number of bits, whether the bits are ordered from least
to most significant, etc. If you try to mix implementations, you’ll screw things up.

With an abstract data type, you hide the implementation details of the data type from the user, so that
what matters is how one interacts with instances of the type, not how they are implemented internally.
So, if you add two integers whose internal representations differ, you should still get a sensible result.

This means that if you create a class using object-oriented techniques (such as making variables private
and only accessible through methods, etc.), then even a concrete class is an abstract data type.

The reason this description doesn't just tell you to create a class to store a place’s data is because you
don't have to use just one class. You could use two classes, or three, or more. You could arrange them
in an inheritance hierarchy (where one is a subclass of another). You could use composition or
aggregation (the types of has-a links we have discussed). All of these classes could be concrete or some
of them could be concrete and some could be abstract. You could also include interfaces, if you saw a
good reason to do so. All of these alternatives would count as creating an ADT.

If the term 'ADT' is still confusing you, think of the assignment as saying “Create something appropriate
that the computer can use to store place data.” This is what it means.

CS 2334 Spring 2011 6

	User Request:
	Milestones:
	Description:
	Operational Issues:
	Implementation Issues:
	Reading from a file:
	Program Arguments:

	Milestones:
	Milestone 1. Use program arguments to specify a file name.
	Milestone 2. Use simple File I/O to read a file.
	Milestone 3. Create an abstract data type (ADT) to store data on a single place.
	Milestone 4. Create an ADT that abstracts the use of a list of place data.
	Milestone 5. Implement a program that allows the user to search the place list as described below.

	How to Complete this Project:
	Preliminary Design:
	Final Design and Completed Project

	Extra Credit Features:
	Due Dates and Notes:
	ADTs

