
Project #2
Computer Science 2334

Spring 2010

User Request:

“Create a Sortable and Searchable Award Winner Information System.”

Milestones:

1. Use keyboard input to get information from the user. 5 points

2. Use text file I/O to read and write text files. 10 points

3. Create a class to store award information, one to store information on people, one to
store information on people who have won awards, and one to store a collection of
award-winning people. Note that you should create any additional classes (abstract
and/or concrete) and/or interfaces you deem necessary to arrive at a good design.

10 points

4. Implement both the Comparable and Comparator interfaces to compare one person’s
information to another’s.

10 points

5. Use a list to store, retrieve, and display information related to people as described
below.

15 points

6. Use the sort() and binarySearch() methods from the Collections class to sort and
search for information related to the description below.

20 points

► Develop and use a proper design. (See Milestone 3, above.) 15 points

► Use proper documentation and formatting. 15 points

Description:

For this project, as with Project #1, you will put together several techniques and concepts learned in CS
1323 and some new techniques to make an application that searches a large collection of information on
people who have won awards. We will call this application a “sortable and searchable award
information system” or “SSAIS,” since the primary features of this system are its sortability and
searchability. Note that much of the code you write for this program could be reused in more complex
applications, as we will see in later assignments.

Your software will first ask the user for the name of the data file where the awardee information is
stored. This should be done using the technique described in the section below on reading input from
the keyboard. It will then read in the specified data file and store the information into the SSAIS. Each
entry in the data file contains a person’s last name, first name, zero or more middle names, and zero or
more awards that person has won. The award information itself will consist of the award name and year
for each award. The format of this file is described below under Input Format.

Once the information is loaded from the file, your program will enter a loop where it asks the user for
criteria on which to sort the data. As with the file name, this information should come from the
keyboard using the technique described below. The possible sorting options the user can enter are ‘F’
for first name, ‘L’ for last name, ‘FL’ for first name then last name, ‘LF’ for last name then first name,
‘N’ for number of awards, and ‘R’ for random. Alternately, the user may choose to enter ‘PC’ for print
to console, ‘PF’ to print to a file, or ‘S’ for search. If the user chooses either print option, the award

CS 2334 Spring 2010 1

information will be printed in its current order (whatever that may be, given the last sort option) and in
the format described below under Output Format. (If the print option is ‘PF’ the user will also be
prompted for an output file name.) If the user chooses search, he or she will be prompted for the first
and last name of an award winner on which to search and your program will search for and display the
information on that one award winner. (You may assume that the combination of first name and last
name is unique in the SSAIS.) The final option available to the user is ‘Q’ for quit. If the user chooses
quit, your program will thank him or her for running the program and exit without errors.

Learning Objectives:

Sorting and Searching:

Sorting information can be useful to users because the output may be organized in a way that makes it
easier to use. It can also be useful to software developers because it can improve the efficiency of their
software. Consider finding personal information based on first and last name. If the data structure
holding the personal data is unsorted, you need to do a linear search through it to find an entry.
However, if the data structure is sorted based on name, you can do a binary search instead. A binary
search will, in most cases, take far fewer comparisons to find the desired entry than a linear search.

To observe this efficiency gain, you will measure the amount of time the system uses to find an award
winner based on name, given the ordering of the data in the SSAIS. Do not count the time the system
uses for reading in the data or carrying out other activities, like waiting for the user to provide
input. Sort the data using one ordering (such as ‘F’) then search for five different names, record the
values for search times, repeat this for each possible ordering of the data, then present them in a simple
table using the format shown below. (You may need to adjust spacing for long names.)

 1. 2. 3. 4. 5.

Last Name:

First Name:

Order Search Time Search Time Search Time Search Time Search Time

----- ----------- ----------- ----------- ----------- -----------

 F

 L

 FL

 LF

 N

 R

Note that some of the sort options are not related to the search terms that the user will be providing or do
not define a unique ordering. For example, the number of awards (one of the possible sort options) is
not related to the name of the person searched for (the search term). Moreover, the ordering defined by
this sort option is not unique. (Several people may have the won the same number of awards, so the
ordering of these awardees based on this criterion is arbitrary.) For these situations, you will have no
choice but to search the collection linearly. On the other hand, when the sort option is related to the
search terms and does define a unique ordering, a binary search is preferred and should be used. For
which sort option(s) is it appropriate to use a binary search (F, L, FL, LF, N, or R)? Explain your
answers. For which sort option(s) is it not appropriate to use a binary search? Explain your answers.

Put the table of data and your answers to these questions into milestones.txt under milestone 5.

CS 2334 Spring 2010 2

Note that the ‘FL’ sort option sorts based on first name then last name which means that the names Joey
Ramone, Johnny Ramone, and Johnny B. Goode would be ordered: (1) Joey Ramone, (2) Johnny B.
Goode, and (3) Johnny Ramone because the first name Joey comes before the first name Johnny and the
last name Goode comes before the last name Ramone. Ordering these same names based on the ‘LF’
sort option would give the order (1) Johnny B. Goode, (2) Joey Ramone, and (3) Johnny Ramone
because the last name Goode comes before the last name Ramone and the first name Joey comes before
the first name Johnny. (Note that the middle initial has no effect in either ordering.)

Note that each collection can have at most one natural ordering. You should determine an appropriate
natural ordering for the award winners and define the compareTo() method of the award winner class
(which must implement Comparable) to use that ordering. The other sort options will need to be
implemented using compare() methods that come from implementing Comparator.

Input/Output Formats:

Input Format

Each entry in the awardee data file contains a person’s last name, first name, zero or more middle
names, and information on zero or more awards the person has won. The award information itself
consists of an award name and an award year for each award. Note that the information on each award
should be stored in an object of the award class, and each award object should then belong to an award
winner. Note also that the award winner class should be derived from a more general person class and
should allow for each award winner to have an arbitrary number of awards.

In the awardee data file each line contains all of the information on a single award winner. Within each
line, the information is ordered last name, first name, then any middle names, where each name is
separated from the next by a comma and a space, and the final name is followed by a semi-colon and a
space, followed by the information on each award in the order award name then award year where the
parts of a single award are separated by a comma and a space and the awards are separated from each
other by a semi-colon and a space. For example:

Marley, Robert, Nesta; UN Peace Medal, 1978; Order of Merit, 1981

This line gives information on a person with the last name “Marley,” first name “Robert,” and middle
name “Nesta.” It shows that he has won two awards: (1) a UN Peace Medal in1978 and (2) the Order of
Merit in 1981. If a person has won no awards, there will be no semi-colon and no award information.

Output Format:

The text written out for each award winner must conform to the following output format.

Line 1: First name, middle name(s), last name.
Line 2: First award name, year (if any).
Line 3: Second award name, year (if any).
Line 4: Third award name, year (if any).
…
Line n: Last award name, year (if any).
Line n+1: Blank line.

Sample Output:
Robert Nesta Marley
UN Peace Medal, 1978
Order of Merit, 1981

CS 2334 Spring 2010 3

Implementation Issues:

File I/O:

To perform output to a file, use the FileWriter class with the BufferedWriter class as follows.

FileWriter outfile = new FileWriter("output.txt");
BufferedWriter bw = new BufferedWriter(outfile);
bw.write("This is a test -- beep.");
bw.newLine();
bw.close();

When you have finished writing to a file, you must remember to close it, or the file won't be saved. If
you fail to close the file, it will be empty!

Remember to add 'throws IOException' to the signature of any method that uses a FileWriter or
BufferedWriter or that directly or indirectly calls a method that performs File I/O.

Reading Input from the Keyboard:

In order to get the personal information from the user, you need to read input from the Keyboard. This
can be done using the InputStream member of the System class, that is named “in”. When this input
stream is wrapped with a BufferedReader object, the readLine() method of the BufferedReader class
can be used to read and store all of the characters typed by the user into a String. Note that readLine()
will block until the user presses the Enter key, that is, the method call to readLine() will not return
until the user presses the Enter key.

The following code shows how to wrap and read strings from System.in using an InputStreamReader

and a BufferedReader.

BufferedReader inputReader = new BufferedReader(
new InputStreamReader(System.in));

System.out.print("Type some input here: ");
String input = inputReader.readLine();
System.out.println("You typed: " + input);

You need to add 'throws IOException' to the signature of any method that uses or that directly or
indirectly calls a method that uses a BufferedReader or InputStreamReader.

How to Complete this Project:

1.Revise your UML design from the lab session. Be sure to clearly write your name and the names of
your group members and “Project 1” on the cover sheet. Remember to not include any personally
identifying information on your project other than on your cover sheet. Make sure to keep a copy
of your UML when you turn it in.

2.Create the classes and methods specified in your design, but do not put code in the methods. Add the
required documentation to your classes and methods as specified in the documentation requirements
posted on the class website. This is called “stubbing” your classes and methods.

3.Run your stubbed Java files through Javadoc as described in the Lab #2 slides. This will create a set of
HTML files in a directory named “docs” under your project directory.

4.Submit your UML design, stub code, and Javadoc as your initial design. (See below for due dates and
requirements regarding submission of paper and electronic copies of project components.)

CS 2334 Spring 2010 4

5.Implement the design you have developed by coding each method you have defined as well as any
others you have left out of your design. As you do this, make sure to modify and annotate the changes to
your design on your UML and properly document all new code. A good approach to the implementation
of your project is to follow the project's milestones in the order they have been supplied.

6.Test your program and fix any bugs.

7.Once you have completed the project and are ready to submit it for grading, create a new set of
Javadoc files using Eclipse and inspect them to make sure your detailed design is properly documented
in your source code. (Actually, it is a good practice to keep your Javadocs up to date as you develop
your software so that they can be of use to you and your team members and to the instructor and/or TA if
you come to office hours for help.)

8. Submit all parts of your completed project. (See below for due dates and requirements regarding
submission of paper and electronic copies of project components.)

Extra Credit Features:

You may extend this project with more search features for an extra 5 points of credit. For example, you
could think of ways to enable a wider range of sort and display options, such as ways to find and display
all awardees who won prizes in the same year.

To receive the full five points of extra credit, your extended features must be novel (unique) and must
involve effort in the design of the extra features and their integration into the project and the actual
coding of the features. Also, you must indicate on your final UML design which portions of the design
support the extra feature(s); and you must include a write-up of the feature(s) in your milestones.txt file.
The write-up must indicate what each feature is, how it works, how it is unique, and the write-up must
cite any outside resources used.

Due Dates and Notes:

An electronic copy of your revised design including stub code and detailed Javadoc are due on
Wednesday, February 24th. Submit the project archive following the steps given in the submission
instructions by 9:00pm. Submit your revised UML design on engineering paper or a hardcopy using
UML layout software at the beginning of lab on Thursday, February 25th.

An electronic copy of the final version of the project is due on Wednesday, March 3rd. Submit the
project archive following the steps given in the submission instructions by 9:00pm. Submit your final
UML design on engineering paper or a hardcopy using UML layout software, a hardcopy of the cover
page for your project, and a hardcopy of the milestones.txt file at the beginning of lab on Thursday,
March 4th.

You are not allowed to use the StringTokenizer class. Instead you must use String.split() and a
regular expression that specifies the delimiters you wish to use to “tokenize” or split each line of the file.

You may write your program from scratch or may start from programs for which the source code is
freely available on the web or through other sources (such as friends or student organizations). If you do
not start from scratch, you must give a complete and accurate accounting of where all of your code came
from and indicate which parts are original or changed, and which you got from which other source.
Failure to give credit where credit is due is academic fraud and will be dealt with accordingly.

As noted in the syllabus, you are required to work on this programming assignment in a group of at least
two people. It is your responsibility to find other group members and work with them. The group
should turn in only one (1) hard copy and one (1) electronic copy of the assignment. Both the electronic

CS 2334 Spring 2010 5

and hard copies should contain the names and student ID numbers of all group members on the cover
sheet. If your group composition changes during the course of working on this assignment (for example,
a group of five splits into a group of two and a separate group of three), this must be clearly indicated in
your cover sheet, including the names and student ID numbers of everyone involved and details of when
the change occurred and who accomplished what before and after the change.

Each group member is required to contribute equally to each project, as far as is possible. You must
thoroughly document which group members were involved in each part of the project. For example, if
you have three functions in your program and one function was written by group member one, the
second was written by group member two, and the third was written jointly and equally by group
members three and four, your cover sheet must clearly indicate this division of labor. Giving improper
credit to group members is academic misconduct and grounds for penalties in accordance with school
policies.

CS 2334 Spring 2010 6

	User Request:
	Milestones:
	Description:
	Learning Objectives:
	Sorting and Searching:

	Input/Output Formats:
	Input Format
	Output Format:

	Implementation Issues:
	File I/O:
	Reading Input from the Keyboard:

	How to Complete this Project:
	Extra Credit Features:
	Due Dates and Notes:

