
CS 2334 Spring 2010 1

Lab Exercise #6 – Menus, Toolbars, and Dialogs in MVC

Computer Science 2334

Due by: Friday, March 26, 2010, 5:30 pm

Members:

Objectives:

1. To learn how to create a dialog box based on the JOptionPane class.

2. To learn how to create a menu system using JMenuItem, JMenu and JMenuBar.

3. To learn how to create a toolbar system using JToolBar.

4. To learn how the model, view, and controller interact in the Model, View, Controller

design pattern.

5. To demonstrate this knowledge by completing a series of exercises.

Instructions:

This lab exercise requires a laptop with an Internet connection. Once you have completed the exercises

in this document, your team will submit it for grading.

Make sure you read this lab description and look at all of the source code posted on D2L for this lab

exercise before you begin working.

Assignment:

Graphical User Interfaces using the Model, View, Controller (MVC) design pattern are an important

programming abstraction that shows how additional structure can be built from objects; it is also one

that will be used in future projects. Carefully inspect how it works and the documentation comments

included in the code.

1. Download the Lab6.zip project archive from D2L. Import the project into your Eclipse

workspace using the slides from Lab #2. You will submit the modified project archive when you are

finished.

2. Review the source code for the OlympicTeam class, which is a class for representing (some aspects

of) Olympic teams. It is extended by the OlympicTeamModel class. This class is the data model for

the program. It extends the OlympicTeam class by adding variables and methods, and by overriding

methods, in order to deal with the GUI. You will use methods provided in these classes to complete

the code for the lab. Note that this is the same data model used in Lab #5, accept that athletes can

now have multiple events and medals listed for them.

3. Review the source code for the OlympicTeamInputWindow class, which is a class that presents a

GUI window to the user for adding new athletes to a team’s roster or for clearing out the roster. This

window provides a view for the model data. Note that this is the same view used in Lab #5.

CS 2334 Spring 2010 2

4. Read through the source code for the AddAthleteListener class, which is a class that listens for the

“Add Athlete” button to be pressed in the OlympicTeamInputWindow. In Lab #6, this class may

present a GUI dialog for clarifying user intent when interacting with the OlympicTeamInputWindow.

In Lab #5, when a user entered an athlete with the same name as one already in the roster, the old

entry would simply be replaced by the new entry. In Lab #6, when the user enters an athlete with the

same name as one already in the roster, the user will be presented with a dialog window that will ask

him or her if the intent is really to replace the existing athlete or to add a new event and medal entry

for the existing athlete. The user will also be given the option to cancel the addition. All of these

options will be presented using an object of the JOptionPane class, which is a new addition for Lab

#6. An example of this dialog object is shown below. As you read through the source code for this

class, note the “TODO” comments provided there that give hints as to what needs to be done in the

program.

5. Is it necessary to create a JOptionPane instance? Why or why not? (Take into consideration the

fact that JOptionPane is modal.)

6. Within the actionPerformed() method of the AddAthleteListener class, use a JOptionPane and

create Strings for all of the information that is to be displayed to the user. These will include the

messages to the user and the labels for the buttons. These components should be added to the

JOptionPane.

7. Complete the actionPerformed() method of the AddAthleteListener class. If the user clicks the

“Replace Athlete” button, this method should save to the model all of the data entered into the

OlympicTeamInputWindow object, replacing the data that was already there by using a mutator

method provided by the data model. If the user clicks the “Add Event” button, this method should

save to the model the new event and medal data entered into the OlympicTeamInputWindow object by

using a mutator method provided by the data model.

8. Compile the lab assignment with your modified OlympicTeamController class. You should not

have needed to modify any class other than the OlympicTeamController class thus far. At this point

you should be able to replace athletes and add to their events using your code. However, the view

will not know that the model has changed, so you may not see the updated information until you take

other actions, such as resizing the model or adding an athlete with a new name.

CS 2334 Spring 2010 3

9. To correct the lack of updates to the view, look inside the OlympicTeamModel class. There you

will see some mutator methods from the OlympicTeam class that have been overridden to inform their

listeners when mutation events have taken place. You should override any additional mutators

necessary to notify potential listeners of any data changes due to the additional code you added to the

OlympicTeamController class. When these mutators have been overridden appropriately, all changes

to the model should be immediately reflected in the view. Once you can see these immediate

changes, move on to the next step of building your menu system.

10. Create a menu item for each of the menu options “Load,” “Save,” and “Exit.” These are to be

added to the program under a “File” menu. The type of each menu item should be JMenuItem. These

objects should be initialized in the constructor of the class. The code for initializing each JMenuItem

object will be similar to: JMenuItem aMenu = new JmenuItem(“Name”);

11. Should the references to these JMenuItem objects be stored as class variables or variables local to

a specific method? (In answering this question, consider which variables will be referenced in the

actionPerformed() method.)

12. Inside the constructor for the OlympicTeamInputWindow class you must also register an

ActionListener on the JMenuItem by calling addActionListener() on teach JMenuItem object. The

OlympicTeamInputWindow class should be used as the class that implements the ActionListener

interface.

13. Create a JMenu object for the “File” menu. Add each menu item to the “File” menu using the

add() method of JMenu. Create a JMenuBar object and add the “File” menu using the add()

method of JMenuBar.

14. In addition to the menu, we are going to implement a toolbar, using the JToolBar class. This

toolbar will give us a “Print” option. To create this, create a JToolBar by declaring and instantiating it

like you would any other GUI component. Then create a new JButton labeled “Print” and add it to

the toolbar by calling the toolbar’s add() method. Last, add the toolbar itself by calling add().

15. Ensure that there are no warnings generated for your code. Do not suppress warnings. Fix

your code so that warnings are not necessary. (If you can't figure out how to fix your code to avoid

the cast warning on the cloned actionListenerList, you may leave in that warning.)

16. Submit the project archive following the steps given in the Submission Instructions by March

26, 5:30pm through D2L (http://learn.ou.edu).

17. Turn in this lab handout (with completed answers) to your lab instructor during lab hours or by

bringing it to his Professor Hougen’s office and sliding it under his office door .

http://learn.ou.edu/

