
Project 4
Computer Science 2334

Spring 2009

User Request:

“Create a Contact Information Management System with Import/Export and Load/Save Features
and an Advanced Graphical User Interface including a Map.”

Milestones:

1. Create a contact information management system to store contact information in an
electronic address book, as done in Project 3, and add to that address book information
on the global coordinates (latitude and longitude) of the addresses it contains.

5 points

2. Create an MVC model as exemplified by the CleanMVCCircleModel class as discussed in
lectures. The class for this model will be called “ContactModel.” This model will
contain (1) the variables and methods needed to keep track of the address book itself
(including the global coordinates, as specified under milestone 1), and (2) the variables
and methods necessary to keep track of the views of the address book.

10 points

3. Create an MVC view associated with the contact information in the model to display the
list of contacts. The class for this view will be called “ContactView.” This view will be
used in conjunction with the “focus” button (see below) to determine a subset of contact
information to display to the user.

10 points

4. Create an MVC view associated with a subset of the contact information in the model to
display a sublist of contacts. The class for this view will be called “FocusView.” This
view will be used in conjunction with the “map” button (see below) to display a map of
some (or all) of the contacts to the user.

10 points

5. Create a pseudo MVC view associated with a subset of the contact information in the
model to display a map of contacts. The class for this view will be called “MapView.”

10 points

6. Implement a simple Graphical User Interface “control panel” using Swing that allows
for selecting among the program's functions (load, save, import, export, view, focus, and
map). The control panel will use buttons for the functions listed plus a text field in a
dialog to get a range for the focus.

5 points

7. Use a JFileChooser dialog to allow the user to choose the file used when loading,
saving, importing, or exporting the dictionary.

5 points

8. Create an MVC controller called “ContactController” associated with the model. When
the user clicks “load,” “save,” “import,” or “export,” the controller will tell the model to
load, save, import, or export itself, respectively. When the user clicks “view,” “focus,”
or “map,” the controller will tell the corresponding view to display itself.

15 points

► Develop and use a proper design. 15 points

► Use proper documentation and formatting. 15 points

CS 2334 Spring 2009 1

Description:

An important skill in software development is extending the work you have done previously. For this
project you will rework Project 3, using contact information for colleges and universities rather than for
people, and add a graphical user interface organized around the model, view, controller (MVC)
paradigm. The MVC paradigm gives us a way to organize code involving graphical data displays and/or
user interfaces, particularly GUIs. Your application will graphically display contact information in lists
and a map. In particular, you will create a single model to hold the data, three views to display various
aspects of the data, and one controller to moderate between user gestures and the model and views. For
this program you may reuse some of the classes that you developed for your previous projects, although
you are not required to do so. Note that much of the code you write for this program could be reused in
more complex applications, such as a an employee database or a social networking website.

Model:

You will create a model class called “ContactModel.” Models in the version of the MVC paradigm
shown in the CleanMVCCircle example from our lectures contain data and methods for the application
objects being modeled (contacts, in this case) as well as data and methods to allow the model to interact
with views. Your model class will follow this version of the MVC paradigm.

For the application objects, you will create an address book, similar to the one from Project 3. This
address book will additionally contain information on the global coordinates (latitude and longitude) of
the contacts.

The names, addresses, and phone numbers for contact objects will originally come from a text file that
the model will read in and parse, known as importing. For each imported postal address, the model will
add a set of global coordinates to the corresponding contact object by querying Google Maps.

The model will also have the ability to export its application data to a text file. This process will be
known as exporting. For exporting, the model will only write out the basic information (name, street
address or PO box, city, state, zip, and phone numbers) – it will not write out the global coordinates –
and will use the same format as the imported text file.

The model will also have the ability to load and save contact information in a “native” file format, rather
than a text file. Loading and saving will be object I/O, so they will load and save all information (name,
street address or PO box, city, state, zip, phone numbers, and global coordinates) for each contact.

The other basic operation that your model should be able to perform is to do a distance-based search.
Given a reference to one contact object and a distance, ContactModel should return a list of all of its
contacts that are within the range specified by the distance.

To interact with views, the ContactModel class will have variables and methods akin to those from the
CleanMVCCircleModel class from our lectures. In particular, when contacts are read into the address book
in the model, the ContactView and FocusView objects should be notified, and when the focus is changed,
the FocusView objects should be notified. (Please note that MapView objects do not need to be notified
when the ContactModel changes. For this reason, we are calling MapView a “pseudo-view.” If you wish
to update the MapView when the model changes, you may do this for extra credit.)

Views:

Producing views of information can be very useful to users. Therefore your program will create and
maintain three views of the data: one list of all the contacts in the address book called “ContactView,”
one sublist of just those contacts on which we are focusing at this time called “FocusView,” and one
“pseudo-view” showing a map of the contacts on which we are focusing called “MapView.” Each view

CS 2334 Spring 2009 2

will be given its own window, which should be a JFrame for ContactView and FocusView but an external
application (a web browser) for MapView.

Within the JFrame for ContactView and for FocusView you should place a scrolling list of contacts. The
list for ContactView should allow for selections by the user. In particular, when the user clicks on
“focus” on the control panel, the current selection in the ContactView should be used to determine the
sublist of contacts to be used for the FocusView and the MapView. You should ensure that only one entry
in the ContactView can be highlighted at any given time. Based on distance to this entry selected from
ContactView, a subset of nearby contacts will be selected for display in FocusView.

As explained above, MapView objects do not need to be notified when the ContactModel changes, which
is why we are calling MapView a “pseudo-view.” To implement the functionality, you will have your
code interact with the Google Maps API to provide information to the web browser.

Controller:

You will create a controller class called “ContactController” to handle the task of asking the model to
update itself in response to user input and selecting views. In particular, the controller will be
responsible for the following:

1. When the user asks to load/import (or save/export) an address book, the ContactController will
tell the model to read in (write out) a file specified by the user through a JFileChooser dialog.

2. When the user asks to see a view, the ContactController will tell the corresponding view to
display itself.

GUI:

The basic Graphical User Interface for Project 4 will have seven buttons plus
one text box. The seven buttons will be labeled “load,” “save,” “import,”
“export,” “view,” “focus,” and “map.” The text box will be for entering the
range to be used for selecting a sublist of contacts on which to focus. The text
box will be a pop-up dialog box. A rough sketch of the basic GUI is shown in
the figure to the right. (The figure is intentionally rough so that you will not
attempt to copy it exactly.)

This main window will be augmented by additional windows that will pop up to help with file selection
and to display the three views. In particular, a JFileChooser window will pop up to help with file
selection for loading, saving, importing, or exporting; a JFrame will pop up to display ContactView and

FocusView; an external application (a web browser) will pop up for MapView.

Loading/Saving and Importing/Exporting:

When your program is run initially, it should be clear from looking at the GUI
that only load and import are possible. To make this
clear, the save, export, view, focus, and map buttons will
be displayed differently (e.g., with the letters “grayed
out”). See, for example, the figure at left.

When the load or import button is selected, a
JFileChooser window will pop up to help with file

selection. Once an address book has been loaded or imported, the other two I/O
buttons (save and export) will become active, as shown at right. These will
provide the user with the two corresponding options: (1) The user may choose to

CS 2334 Spring 2009 3

save the address book, using object output. If the user makes this choice, an appropriate dialog will pop
up to allow the user to specify a file name and to browse directories to determine where to save the file.
(2) The user may choose to export the address book using text output. Again, if the user makes this
choice, an appropriate dialog will pop up to handle file name and directory selection. Additionally, once
an address book has been loaded or imported, the view button will become active.

Displaying Views:

When the view button is clicked by the user, the ContactView will be displayed. If the user selects one
of the contacts in the ContactView, then the focus button will become active.

If the user clicks on the focus button while a contact is selected in the ContactView, then a dialog box
will pop up and prompt the user for a distance from the selected contact within which to focus the
system. Once a positive value is entered into the dialog, the FocusView will be displayed. The contents
of FocusView will be all of the contacts from the address book that are within the specified range of the
selected contact.

Once the FocusView is visible, the map button will become active. If the user clicks on the map button,
the MapView will appear, showing all of the contacts from the FocusView in a Google map within an
external web browser.

Each time the address book contents are changed (a new address book is loaded or imported), your
program will update the ContactView, hide the FocusView if it is currently visible, and deactivate the
focus and map button if they are currently active.

Implementation Issues:

Time Management:

This is the largest project we’ve had so far so make sure to start early and budget your time well. Once
you have a good design, you can write a part at a time and test it before moving on to the next part.
Don’t expect to be able to finish the project if you put it off until the last minute; on the other hand, if
you use your time well, you should have plenty of it.

Google Maps and the Google Maps API:

Background:

The Google Maps Application Programming Interface (API) uses JavaScript to create interactive maps
within graphical web browser windows. (See: http://www.google.com/apis/maps/index.html and
related pages.) You are undoubtedly already familiar with at least one web browser – how else would
you have accessed this document from the class web pages? Most web browsers (e.g., Firefox, Opera,
Epiphany, Konqueror, OmniWeb, Safari, etc.) are graphical, though some (e.g., Lynx) are text-based.
For this assignment, you will need to use a graphical browser that is capable of processing JavaScript to
display the map and have the data plotted on it.

JavaScript is a programming language used primarily for client-side scripting on the web. This means
that a web browser will load a piece of JavaScript source code – typically from a web server, though in
this assignment from a file – which it can then interpret and run. Because the JavaScript is normally
coming from a web server to your browser (which is said to be the client which the server is serving),
we call this “client-side.” Because it is the source code that is loaded by the browser, we call it
“scripting.”

Note that this is different than the way browsers handle Java. With Java, the source code is compiled

CS 2334 Spring 2009 4

http://www.google.com/apis/maps/index.html

into bytecode before being handed to the browser. The browser then uses a Java Runtime Environment
as a virtual machine to run the Java bytecode.

Java and JavaScript share some syntax but are not closely-related languages. They are both used in
browsers to add dynamic content, which is why Sun (which developed Java) and Netscape (which
developed JavaScript) saw a marketing opportunity and agreed on the similar names.

Description:

To interact with Google Maps, we’ll do two things.

First, to query Google Maps for global coordinates for our contacts, we’ll create a query string within
Java, open a direct URL connection to http://maps.google.com, send the query string to Google Maps as
part of the URL, and read the response sent back by Google. We will then parse the received response
and place the latitude and longitude values into our contact objects. A template for this code has been
provided to you.

Second, to use the Google Maps API to display maps in a web browser, we’ll embed our JavaScript in a
small HTML wrapper. This is because the web browser is expecting the file it loads to be a web page.
Inside the HTML will be information to tell the browser that we are using JavaScript (“<script ...
>”), to fetch some base JavaScript from Google Maps (src='http://maps.google.com/maps?
file=api&v=2'), and to implement our own JavaScript functions. Our JavaScript will tell the
browser to create a new map to go in the canvas, create a new center point for the map and center the
map there, and to put a marker at the latitude/longitude coordinates for each contact location.

A template for this JavaScript has been provided to you. In this code, the JavaScript is a single long
string called “content” that will be written to a file, which the browser will then open. When the
browser opens the file, it will run the JavaScript (assuming the browser is JavaScript capable and has
JavaScript processing turned on).

Also provided are simple examples for how to substitute into the JavaScript content string and how to
start the browser. The substitution examples are rather like stub-code in that they allow you to see how
parts of the code will function but do not implement all the functionality that you'll want in your code.
In order to complete your assignment, your will need to create methods that can substitute into the
content string the actual data selected by the user from the GUI you are creating. For the center point,
you may use the latitude/longitude coordinates of the contact selected in ContactView.

Due Dates and Notes:

Due Dates:

Your revised design and detailed Javadoc documentation are due on Thursday, April 9th. Submit the
project archive following the steps given in the submission instructions by 9:00pm. Submit your
revised UML design on engineering paper or a hardcopy using UML layout software, a hardcopy of the
index page of your Javadoc documentation, and a hardcopy of the stubbed source code at the beginning
of lab on Thursday, April 9th.

The final version of the project is due on Thursday, April 23rd. Submit the project archive following
the steps given in the submission instructions by 9:00pm. Submit your final UML design on
engineering paper or a hardcopy using UML layout software, a hardcopy of the index page of your
Javadoc documentation, and a hardcopy of the source code at the beginning of lab on Thursday, April
23rd.

CS 2334 Spring 2009 5

http://maps.google.com/
http://maps.google.com/maps?file=api&v=2
http://maps.google.com/maps?file=api&v=2

Sources:

You may write your program from scratch or may start from programs for which the source code is
freely available on the web or through other sources (such as friends or student organizations). If you do
not start from scratch, you must give a complete and accurate accounting of where all of your code came
from and indicate which parts are original or changed, and which you got from which other source.
Failure to give credit where credit is due is academic fraud and will be dealt with accordingly.

Group Work:

As noted in the syllabus, you are required to work on this programming assignment in a group of at least
two people. It is your responsibility to find other group members and work with them. The group
should turn in only one (1) hard copy and one (1) electronic copy of the assignment. Both the electronic
and hard copies should contain the names and student ID numbers of all group members. If your group
composition changes during the course of working on this assignment (for example, a group of five
splits into a group of two and a separate group of three), this must be clearly indicated in your write-up,
including the names and student ID numbers of everyone involved and details of when the change
occurred and who accomplished what before and after the change.

Each group member is required to contribute equally to each project, as far as is possible. You must
thoroughly document which group members were involved in each part of the project. For example, if
you have three functions in your program and one function was written by group member one, the
second was written by group member two, and the third was written jointly and equally by group
members three and four, both your write-up and the comments in your code must clearly indicate this
division of labor. Giving improper credit to group members is academic misconduct and grounds for
penalties in accordance with school policies.

Extra Credit:

There are many possibilities for extra credit on the mapping side of the assignment. The key is to make
them useful, explain why they are useful, and implement them well. For example, you could associate
additional data relating to each point with its marker so that it appears when the user “mouses over” the
point. How many points you may get for any addition depends on how useful it is and how well it is
explained and implemented.

CS 2334 Spring 2009 6

	User Request:
	Milestones:
	Description:
	Model:
	Views:
	Controller:
	GUI:
	Loading/Saving and Importing/Exporting:
	Displaying Views:

	Implementation Issues:
	Time Management:
	Google Maps and the Google Maps API:
	Background:
	Description:

	Due Dates and Notes:
	Due Dates:
	Sources:
	Group Work:
	Extra Credit:

