Submission Instructions

Computer Science 2334
(Revised Spring 2009)
To submit your assignment, you should:

1. Generate the appropriate Javadoc documentation. This will be detailed in Section A.
2. Archive the project as instructed in Section B.
3. Upload the project archive to the appropriate drop box on the Desire2Learn website.

Please follow these instructions carefully. These instructions were developed with both faculty and
students in mind. If you have any questions after you read this document in its entirety, please contact
your Instructor or one of your TAs immediately. Also, unless otherwise directed, students should
submit everything (labs, designs, and final projects) as groups, as detailed in the Documentation
Requirements file.

Additional Instructions:

If you are submitting the final project, make sure to include “Milestones.txt” inside the Eclipse project—
don’t submit it separately. The Milestones file will be included only on the final project submission;
not labs or project designs. The Milestones.txt file will list the numbered objectives of the project, and
list which objectives you believe that you have met. If you know of problems in meeting the objective,
explain the problem, so that you may be considered for partial credit. A sample is given below.

Milestone #1:
I met this milestone. The test data which demonstrates this is in milestonel.txt

Milestone #2:
I did not meet this milestone.

Milestone #3:
I sort of met this milestone. My test data (included in obj3.txt) runs OK until the remove
command is done. At this point the program gives a NullPointerException.

By directing the grader's attention to a part of the project that you struggled with, and detailing what
you attempted to do (along with what you accomplished) will allow the grader to be more fair in
assigning a grade. If you fail to do so, then the grader will most likely assume that you had no idea
what was going on, and therefore will not receive as much partial credit.

Section A—Creating the Javadoc

Before proceeding, read about how to generate the correct Javadoc documentation in Documentation
Requirements. This file can be found on the class website, just as this one is. Java generates nicely
formatted, html style documentation for its classes, just like what you see when you browse the Java

API online at http://java.sun.com/javase/6/docs/api/. The trick is that you need to format your
comments correctly in order to do so. The Documentation Requirements give those instructions in
detail. This document will only show how to generate the documentation after you have properly
written your source code.

Step 1—Select the project for which to generate the Javadoc

& Java — Eclipse Platform

File Edit Sowce Refactor Havigate Search PFroject Run Window Help

- - Q- Q- BB O ®E S e B9 %5 Debue (& Tava |
[Package Ex 03 Te Hierarchy — O = B[[E Task List 52 : =ie)
| BR |« | da@E-@~
I .‘m;ult cleage] finc |—| bl
@[] Labl. java | === (Click on the project name for h Uncategorized
L g Lielesniod which you want to create javadoc.
B sre

= B} (default packagzel
@ [J] Clas=01. java
#-m=4 TEE System Litrary [jrel.6.0.0Z

|BE Dutline 53 =

-

An outline is not awailable

[£ Problems | @ Javadoc ([, Declaration | Bl Console 52 ® % | G UjliEIIfE“_I = =0

<terminated> Lab2Driver [Tava Application] D:\Program Files\Javahjral.5,0_03%binkjsvew. sxs (2008-1-23 F4F07.59.27)

EE Lab#l

http://java.sun.com/javase/6/docs/api/

Step 2—Run the command to generate the Javadoc

& Java — Eclipsze Platform

le Edit Source Refactor K

L]
| [# Packsgs Ex 5% . Tg Hierarchy| — O
2|B%|# 7|
= e

= fH (default package)
[#[J] Labl. java

. E JEE System Library [jrel £.0_03
== Broj#l

-8 sre

. E-f} (default package)

- [J] Class0l. java
[#-m JEE System Library [jrel 6. 0_0Z

Lah#l

igate Search

o = R R -

Cloze Project

([Zl Problems | @ Jawadoc Declaration | B Console 52 .

B %5 Debug | &) Tava |
‘Z'EI'_@TaskListzé] =8|

@ E-®7

Euild Horking Set » Find: | | boall
Clean... (5 Uneategorized
Build Automatically =
Froperties
Choose it.
(8% utline 53 - =m)
. =

An outline is not awvailable.

AR

PR

Step 3—Set the correct options

& Generate Javadoc

1. According to your computer, _ |
input the correct path for | J
javadoc.exe Yo

Javadoc Generation

Select types for Jawadoc generation.

Javadoc command:

D:\Program Files'\Jawa'jdlkl 6. 0_03'bin'javadoc. exe

Select types for which Jawadoc will be zenerated:

& [7]lzy Lab#l
@[]z Proj#l

3. This will be the folder
containing javadoc files.

!2. Choose it.
cate Jawadoo for members with wisibility:

Priwate. Generate Javadoc for all class

C}Prgtected 'C}Pgblic
and members.

@ Use Standard Doclet

Destination: D:temp'projiworkspacehes2334 lablhdoc |

O Use Custom Doclet

4, Press it.

@ [Finish || Cancel |

The above window does a few things. First, make sure that the javadoc command that Eclipse is
expecting to use is the correct one. The command should be in the same directory as the previously
used commands java and javac where, with respect to the jdk that you already installed.

Ensure that you choose to create Javadoc for members with visibility of private. This is not the default,
and if you follow good data encapsulation practices (and make most of your class variables private),
they will not show up unless you select the “Private” option, as done above. Don't worry, all of your
members with public, protected, and package visibility will also be included.

Note the destination location of your Javadoc (#3), as it should default to a “doc” directory inside your
project; then select next.

Step 4—More configuration; keep the defaults, except for @author

& Generate Jawvadoc

Javadoc Generation -
Configure Javadoe arguments for standard declet. J
1|

|:|Ilee1.1.ment title;

Eazic Options Document these tags
Generate usze page D@guther
Generete hierarchy tree @Eersien
ICrenerelte navigator bar @iepreeeted
I13-e11erete index depreeeted list

Sepere.te index per letter

Select referenced archiwes and projects to which links should be zgenerated:

|:| -:':rl charzets. jar — http:/fjava sun. comf javaze B does/api/f 4'\' [Select #11]
|:| lif-l dnzns. jar — httpif java sun comf javazse /B docsfapif
Ll -T.:Ijee.jer = http:ffjava sun. comf javase/Bf docsfapif . [Clear All]
¥ -.._'__-jsse._ier - http:ffjava sun comf javasa B docs api, I
[] 5zFLab#l - not configured
|l -:':-leeeledete._ier = http:/fjava sun. comf javase B docs api,
El -_::'-reseurees.jer = http:ffjawva. sun. comfjavasze B docs apif
T R e ey R S e S e ey L e b
DSt}:le csheet: . rogse
Click it.
) Finish | [Cancel

The above window keeps the defaults (or should, at least). Double-check that your selections are the
same as above, though, just to be sure.

There is one thing you need to change, however. Since we have to submit a copy of various
assignments for accreditation purposes, and we cannot have any personally identifying information on
the submitted assignments, we do not want you to include the @author tags. By default, it will be
selected, but if you included the tags in your source code (which we will be telling you NOT to do),
you need to de-select the option here so that it does not show up. Note that we do not want you to
include it on your source code either, so changing this default is really just keeping in line with our
overall policy. You will include a cover sheet (to be described later) that details exactly who did what.

Step 5—Format the output and create the Javadoc

& Generate Jawadoc I;;@@

Javadoc Generation
@

Configure Javadoc arguments. J

1 | J

|:| Owerview: ! |

WM options (prefixed with '-T', e g —J-XmxlS0m for larger heap spacel:

Extra Jawadoc options (path nmames with white spaces must be enclosed in quotes):
|—breal':iterat-:-r

1. Insert "-breakiterator”.

JEE =zource compatibility: El.Eu |

DE&V& the settingz of thisz Jawadoc export as an Ant seript:

Ant Seript: [l

Dl:lgen generated i1ndex file in browser

2. Press it.

e =

Be sure to insert “-breakiterator” (w/o quotes) as shown above. This will format the Javadoc
appropriately. The rest of the options should be the default. Press the Finish button to create the
Javadoc.

After running this wizard, you should have the Javadoc show up under a directory named “doc” in your
project. Look at your “package explorer” (the left-hand window pane that allows you to browse the
contents of any project), and it should be there. You can even right-click on the doc directory, and

choose “properties”, and discover the full path to your Javadoc, as it resides on the hard drive.

The picture on the next page shows this. This ends our instructions on how to create Javadoc. Please
ask a TA if you have any more questions, and do it soon, as we will be creating Javadoc many times

this semester, and it is part of your grade. The page after the next picture will begin the steps to
properly export an Eclipse project.

& Java — Eclipse Platform

File Edit HNavigate Search FProject Bun Windew Help
s iF-0-Q- EHE B Vel T %5 Debuz |§ Tava |
I:S Paclkage Ex EX 'Eg }{ierarchy‘g =8l = E@ Tasl List EX 4 = E-.'
2| Bs|w 7| gae-e”
WE"#:& TN Find: | | P oALL
El eral 1 ackage e
E g Iy Labl.jiva £ G}_.'_Uncategorized
; i This is the javadoc just created.
H = doC. Fesources
. [# B JEE System Library [jrel.S.D_DE; . . .))
e e Right click on it and choose Properties; you will
@B sre see where is it in your hard drive.
. B3 (default package)
: [[J] ClassOl. java | i }
[#-g, JRE System Library [jrel. 6.0_0Z EE Outline 52" = H
=

An outline iz not available.

L |

Froblems | (@ Javadoc @ Declaration | Bl Console 53

Ho consoles to

(akd
L

Section B—Exporting an Eclipse Project

The following instructions will walk you through the process of exporting an Eclipse project. We will
be submitting all programming assignments via Eclipse archives, so please pay attention to the steps.
In addition, the projects will have extra documentation that needs to be submitted, and if it is missing,
you will lose points. Please follow the instructions exactly. Before we show how to export an Eclipse
project, here is what needs to be submitted for the three types of programming assignments that
students will have this semester:

1. Lab assignments—ILab assignments will consist of short and very specific exercises that
supplement course material. Often, source code is provided to the student, with the expectation
that the student will write code that will enable the existing program to function properly.
Detailed instructions are given with each lab. When the lab assignment is finished, the group
needs to hand in the “hard copy” (printed handout), and submit the “soft copy” electronically to
the appropriate dropbox on the D2L website (http:/learn.ou.edu). For labs, the soft copy
should only contain the project archive (discussed below), and nothing else.

2. Project Designs—Once a project has been assigned, each group will have a specific amount of
time to submit both a hard copy and a soft copy of their project design. This design does not
need to be final; it may fluctuate and change significantly before the project is finished. What
this design should reflect, however, is a carefully thought out plan as to how the project
specifications will be reached. This means that a good amount of time should be put in before
any code is written. In fact, no code is allowed to be written inside the project design methods.
This is called “stubbing” your code. Variables should be declared, and methods should have
their signatures (names, and parameters/return types, if not void). A well-though out design
should be able to reflect a clear plan as to how the project will be accomplished. The hard copy
should contain a printout the cover sheet, stubs, and UML. The soft copy should include the
cover sheet, stubs, UML and Javadoc.

3. Final Project—When the final, working project is submitted, the hard copy should contain a
printout of the cover sheet, UML, and source code. The soft copy should have all of these, and
the Javadoc.

The proper format and content of these items will be elaborated on in the Documentation Requirements
file (and in class), but for now, you should concern yourself primarily with what to submit with each
assignment, both hard copy and soft. See the next page for the first picture.

http://learn.ou.edu/

Step 1—Select and name the project

E Java — Eclipse SDE

File Edit Souwrce BRefactor Hawigate Search Project Bun Windew Help

1 - 0-Q- G @Y o | & Tava |
= <§> =1/ |/An outline is not e Tahla) 1
e @ " Important :
etault package) g
&[] Driver. java Make sure your project has the same name as the 4xd of
- [J] UserInterface. java the group member who will be submitting the project.
H |1| Zipcode. java
| & [J) ZiphB. jeva Right click on it.
2 doc
#-f doc. resources
#-m, JEE System Library [jrel . 6.0_0
‘|| towns
;‘Problems;“J'avadoc.:]]eclaration E Console EX Call Hierarchy: % B [‘:’ .= E
Ho consoles to display at thiz time.
£ |
N blogl2ad

Make sure the project has the correct name, and then select it by using a right click.

Step 2—Choose the export option

E Java — Eclipse SDE

File Edit Souwrce BRefactor Hawigate Search Project Bun Windew Help

[~ - 0-Q- BHG- I i S (8 Teva |

Hierarchy; = 0] = O|[5% outline 52 =

A |lAn outline is not availsble.
-omemr |, | :
23 (defs =
@ m o Go Into
Lo m L Open in Hew Window
D BB I gpen Type Hierarchy F4
Come]
& E& doe | =] Copy Ctrl+C
H-f dae. “opy Hualified Hame
(¢}, JEE | Paste Cirlty
"l tovns ¥ Delete Delete
Build Path »
Source ALt+Shift+s ¥
Refactor ALt+Shift+T ¥

Click it.
" Refresh F5
Close Froject
Bun As L4
Debug A= L4
o Build Fat Jar — = = - r—
Team > aration:E Console &3 Call Hierarchy & Els M- 50
Compare With 3 at this time.
Restore from Local History. ..
FIE Tools L4
Properties M t+Enter
£ |
: % blogl2ad

Please use the wizard; do not try to archive the file via a third party application; the grader might not
have the same program as you, or the application may not include the hidden configuration files that
Eclipse uses to define the project.

Step 3—Choose the correct format

& Exzport E|
Select

Export resources to an archive file on the local file system. ﬁ

Select an export destination:
:t}'pe filter text I

== General

80 firchive File 1. Choose this.

D eallDo
f__l File Sy=stem

: E Preferences

EI [Java

#-(= Flug-in Development

EI [Team

=% Other

2. Click it.

Make sure to choose the archive file; we will be exporting the project to a zip file. Also note that our
format falls under the “General” section; not the “Java” section.

Step 4—Choose the destination and run the export

& Export E|
Archive file =
Export reseurces to an archiwe file on the local file system. |
V&
[7]l=> blogl23d [E . classpath Al
D .project
J.;.l_?.;.]:lriver. clazs
[J] Driver. jawa
This will be the location of the zip file. L) UserInterface. class
The name of the zip file can be whatever [J] UserInterface. java
you like. fpZipDB. class
[J]ZipDE. java -
fﬁhzipcnde. class
| [4] [J]Zipeode. java 8|

[Select Types. .. Select A11] [Deselact Al]

To archive file:§D:hes2334=p08hprojectsiiproiliblogl23d. zip v;

Options
@Save in rip formati G}Ereate directory structure for files
'::}Saze in tar format {:}Create only selected directories

Cnmress the contents of the file

Press it.

Note that the project we have selected for export is selected for us in the upper-left pane. Also note that
all of the files in the project's directory should be selected. This is the point where you should ensure
that non-source code files (such as the Javadoc and your UML, and possibly the Milestones file) are
also selected for export. Then, choose your destination (it is easiest to choose an easy place to navigate
to, such as your Desktop or Documents directory), and remember it, since this is where you will find
your zip file to upload to D2L. By default, you should have the zip format selected, and the other
options you see above. If not, then choose them. As shown, you can name the zip whatever you like,
since once decompressed, it will have a folder that is named the name of your project. Usually,
students name it the same as their project. Finally, press the Finish button, and you are done!

