

Final Report: Project 1

Team 3:

 Jonathan Siegel
 Kumaresh Rajan

 Prateek Duggal

February 16, 2004

1.0 Robot Design

Initial Design
This robot was initially designed with a two-wheel approach. This initial

design consisted of two wheels roughly one inch wide and one and a half inches
tall located on the center of the robot. These two wheels represented the robot’s
axis of symmetry with respect to the front and the rear of the robot. This wheel
placement was proposed and used in order to minimize the amount of deviation
from the axis of rotation in order to keep the robot from going off course.

 Motors supplied in the robotics kit drove the wheels. The gear ratio used
in this design to drive the wheels was a one to one ratio. This design was
accompanied by stabilizers, both to the front and to the rear of the robot in order
to keep the robot relatively level with the surface it was placed on. The
stabilizers consisted of extremely thin wheels with the tires removed. This was
chosen to try to minimize the amount of friction that the floor would create with
the stabilizers. One unforeseen advantage for the wheels that were chosen for
the stability was that the wheels chosen actually aided the robot in achieving a
straight path of travel for a relatively long period of time.

 The placement of the CMUcam on the initial design of the robot was in the
center of the robot between the two driving wheels. The CMUcam was
positioned so that the axis of rotation was located in the center of the viewing
window. This camera position was desired to eliminate the need to make a
course correction after the sensing of the color and before the turning of the
robot. It was theorized that minimizing the amount of course correction required
would simplify the implementation of the Interactive C code that would be
required to drive the robot.

The rest of the body of the robot consisted of a very simple support
structure for the wheels, camera, and Handy Board. The support of the robot did
not need to be very extensive because the robot was designed to minimize the
amount of shearing force that was to be placed on the support of the wheels and
motors. The Handy Board was mounted on the top of the robot in a very simple
rectangular support structure. The vertical compression of the robot by the
Handy Board was sufficient to keep the pieces of the robot from separating while
the robot was moving.

Modified Design

The initial design was very good except for the problem of the wheels
slipping. The tires used did not have sufficient traction, and this resulted in
inconsistent turning. This design was thus altered by replacing the two wheels
with two treads.
 The two-tread design used the same housing for the Handy Board, but
completely replaced the rest of the robot. In this new design, the motors were

set more to the back of the robot and drove the treads using a one-to-one gear
ratio. This ratio was used because the team wanted a moderate speed
accompanied by enough torque to power the treads.

The treads spanned most of the body of the robot, and actually maintained
the ability of the robot to turn without significant, if any, deviation from the axis of
rotation. The treads did, however, create a much greater shearing force on the
structure of the robot and would cause the pieces to pull apart from one another.
This resulted in a large problem with gear slipping, so more support had to be
added. The supports used were attached to the sides of the pieces that were
being separated, and bound them securely to one another. This addition solved
the gear slipping issue that had arisen.

Another significant addition to the robot was the addition of optical
encoders to make the turning problem a digital problem. These sensors were
used in conjunction with wheels supplied in the robotics kit that had holes of
uniform distance from the center of the wheel as well as uniform spacing around
the wheel. This ensured that the reading of the optical encoders was consistent.
These sensor units were placed on each tread to ensure the consistent turning of
the robot. In order to improve the accuracy of the sensors, the wheels were
connected via a four-to-one gear ratio with the speed of the treads. Maximizing
the amount of revolutions of the sensor wheel over the treads will allow the
sensor to take many more readings thus ensuring that the treads are moving
correctly with respect to one another. The addition of these sensors almost
trivialized the problem of turning the robot at consistent and accurate angles.

The last major design alteration involved the placement of the CMUcam.
The original design was proposed and constructed before the camera was
properly tested, and it was later discovered that the camera required a significant
amount of light in order to read the colors effectively. Many different positions
and alignments were proposed and considered, and the decision came to mount
the camera a couple inches out from the front of the robot and align the camera
so that it points straight down. This will ensure a consistent viewing window as
well as allow enough light for the camera to operate satisfactorily. The issue of
proper support for the camera was solved with a rubber band and a large
garbage tie. This ensured that the camera would not move while operating the
robot, ensuring a consistent viewing angle.

The major problem with the robot design is not so much a design problem,
but a problem with the motors. The motors were found to be inconsistent, and
completely dependent on the amount of battery power left in the Handy Board.
This resulted in many inconsistent tests resulting in significant amounts of extra
testing.

2.0 Robot Software Design and Code

2.1 Introduction:

After testing the responsiveness and accuracy of the robot using Interactive C it
became clear that simple algorithms were needed to operate the robot. Extra
complexity in the code proved to be more of a hindrance than a benefit because
of the unpredictability of the equipment in the robotics kit. Also, debugging the
robot would have proven to be much more difficult with a complex design
because it would be harder to tell if the robot was behaving incorrectly due to bad
programming logic or if the problems were caused by inaccurate sensor
readings. In keeping with this philosophy of simplicity it was decided that each
module would only contain the bare essentials. For example, in doing the color
recognition extra cmucam library functions like setwin() and variables such as
track_x were not included in the code because these extra features caused the
robot to behave unexpectedly.

2.2 Data Structures:

No data structures were used in the source code.

2.3 Functions:

main()
The main method in the code was responsible for sensing the environment (i.e.
color recognition) and calling the appropriate helper function. The entire color
recognition module was place in the main method and “if conditionals” were used
to select the appropriate actions. Color was sensed using the trackRaw()
method and if a high enough track_confidence was found then a helper method
would be called to change the position of the robot, else the default go straight
action would be preformed. The main method would terminate after the yellow
color was found by setting the yellowfound variable to equal one.

forwardclicks()
Routine that is called after the robot has found a color. The routine moves the
center of the robot over the colored square in order to align the robot with the
maze.

reset_encode()
This method when called will reset both the left and right slot sensors to zero.

SENSE
COLOR RECOGNITION
Main Method

ACT
MOTOR ROUTINES
Helper Methods

calc_turn()
Method returns the sum of axle rotations for the left and right wheel.

corr_err()
Note this code was taken from group 1 from the spring 2003 term of intelligent
robotics. The code was modified to suit the needs of our robot.
Code calculated which motor of the robot rotated the fastest using the encoder
values from the slot sensors. If the difference of the motor outputs for the robot
is greater that the TURN_TOLERANCE (10 axle rotations) then the code would
try to realign the orientation of the robot.
 The code was never implemented in the final version of the robot because of the
difference of power levels in the robot’s motors (i.e. because the left motor was
always stronger then the right motor the code would always indicate left drift
even if no drift occurred)

forward()
Code tried to make the robot move in a straight line. The motors were allowed to
pulse for .37 seconds and then went into idle for 1 second. The pulsing allowed
the viewing window of the camera to examine every inch of the floor, and idling
the motors gave enough time for the camera to sense the colored square before
the motors began to move again. The “proper” power levels for the motors were
found after intensive testing of the robot. In theory setting the power levels of
each motor to the same value would allow the robot the to move in a straight line,
but this was not the case for our robot due to the huge power difference between
the left and right motors. In order to compensate for the power difference the left
motor power level was made to be significantly less than the power level of the
right motor.

reverse()
When routine is called the robot will perform a right turn for 180 degrees. Both
slot sensors are reset and the motors are allowed to turn until the sum of the
motor rotations equal TURN_TIME_REV (266 axle rotations). corr_err() was
supposed to called to compensate for drift, but given the inaccurate readings of
the motors the method was commented out.

left()
When routine is called the robot will perform a left turn for 90 degrees. Both slot
sensors are reset and the motors are allowed to turn until the sum of the motor
rotations equal TURN_TIME_L (120 axle rotations). corr_err() was supposed to
called to compensate for drift, but given the inaccurate readings of the motors the
method was commented out.

right()
When routine is called the robot will perform a right turn for 90 degrees. Both slot
sensors are reset and the motors are allowed to turn until the sum of the motor

rotations equal TURN_TIME_R (134 axle rotations). corr_err() was supposed to
called to compensate for drift, but given the inaccurate readings of the motors the
method was commented out.

2.4 The final Code

#use "cmucamlib.ic"

/*
Motor Constants
POS_TURN : MOTOR POWER LEVEL FOR A POSITIVE TURN
NEG_TURN : MOTOR POWER LEVEL FOR A NEGATIVE TURN
TURN_ROTATIONS_REV : AMOUNT OF AXL ROTATIONS FOR A REVERSE
TURN_ROTATIONS_R : AMOUNT OF AXL ROTATIONS FOR RIGHT TURN
TURN_ROTATIONS_L : AMOUNT OF AXL ROTATIONS FOR A LEFT TURN
LEFT_MOTOR : INTEGER REP. OF THE LEFT_MOTOR
RIGHT_MOTOR : INTEGER REP. OF THE RIGHT_MOTOR
FORWARD_CLICK : NUMBER OF AXL ROTATIONS FOR A FORWARD
CLICK (ie the small amount
of clicks needed to be on top of
colored square)
TURN_TOLERANCE :USED TO COMPENSATE FOR ROBOT DRIFT
DURING A TURN. IF THE DIFFERNCE BETWEEN MOTOR ROTATIONS IS
GREATER THAN TURN_TOLERANCE THEN THE ROBOT COMPENSATES
FOR DRIFT
*/

#define POS_TURN 100
#define NEG_TURN -100
#define TURN_ROTATIONS_REV 266
#define TURN_ROTATIONS_R 134
#define TURN_ROTATIONS_L 120
#define LEFT_MOTOR 0
#define RIGHT_MOTOR 3
#define FORWARD_CLICK 30
#define TURN_TOLERANCE 10

/*
Max and Min RGB values of BLUE
MAX_BLUE_R: MAX R VALUE
MIN_BLUE_R: MIN R VALUE
MAX_BLUE_G: MAX G VALUE
MIN_BLUE_G: MIN G VALUE
MAX_BLUE_B: MAX B VALUE
MIN_BLUE_G: MIN B VALUE */

#define MAX_BLUE_R 62
#define MIN_BLUE_R 46
#define MAX_BLUE_G 170
#define MIN_BLUE_G 136
#define MAX_BLUE_B 130
#define MIN_BLUE_B 106

/*
Max and Min RGB values of GREEN
MAX_GREEN_R: MAX R VALUE
MIN_GREEN_R: MIN R VALUE
MAX_GREEN_G: MAX G VALUE
MIN_GREEN_G: MIN G VALUE
MAX_GREEN_B: MAX B VALUE
MIN_GREEN_G: MIN B VALUE
*/
#define MAX_GREEN_R 117
#define MIN_GREEN_R 93
#define MAX_GREEN_G 159
#define MIN_GREEN_G 127
#define MAX_GREEN_B 26
#define MIN_GREEN_B 20

/*
Max and Min RGB values of ORANGE
MAX_ORANGE_R: MAX R VALUE
MIN_ORANGE_R: MIN R VALUE
MAX_ORANGE_G: MAX G VALUE
MIN_ORANGE_G: MIN G VALUE
MAX_ORANGE_B: MAX B VALUE
MIN_ORANGE_G: MIN B VALUE
*/
#define MAX_ORANGE_R 180
#define MIN_ORANGE_R 144
#define MAX_ORANGE_G 69
#define MIN_ORANGE_G 55
#define MAX_ORANGE_B 16
#define MIN_ORANGE_B 16

/*
Max and Min RGB values of ORANGE
MAX_ORANGE_R: MAX R VALUE
MIN_ORANGE_R: MIN R VALUE
MAX_ORANGE_G: MAX G VALUE
MIN_ORANGE_G: MIN G VALUE
MAX_ORANGE_B: MAX B VALUE

MIN_ORANGE_G: MIN B VALUE
*/
#define MAX_YELLOW_R 180
#define MIN_YELLOW_R 144
#define MAX_YELLOW_G 166
#define MIN_YELLOW_G 134
#define MAX_YELLOW_B 18
#define MIN_YELLOW_B 16

/*
Max and Min RGB values of ORANGE
MAX_ORANGE_R: MAX R VALUE
MIN_ORANGE_R: MIN R VALUE
MAX_ORANGE_G: MAX G VALUE
MIN_ORANGE_G: MIN G VALUE
MAX_ORANGE_B: MAX B VALUE
MIN_ORANGE_G: MIN B VALUE
*/
#define MAX_PINK_R 176
#define MIN_PINK_R 136
#define MAX_PINK_G 18
#define MIN_PINK_G 16
#define MAX_PINK_B 16
#define MIN_PINK_B 16

/*
forwardclicks(); Is a robot routine that is called after the
robot has found a color. The routine moves the center of the robot
over the colored square inorder to align the robot with the maze.
*/
void forwardclicks()
{
 reset_encode();
 printf("forward click \n");
 motor(RIGHT_MOTOR, 70);
 motor(LEFT_MOTOR, 30);
 sleep(0.6);
 ao();
}

/*
reset_encode(); This method when called will reset both the left and right
slot sensors to zero.
*/
void reset_encode()
{

 reset_encoder(0);
 reset_encoder(1);
}
/*
calc_turn(): Method returns the sum of axl rotations for the left and right
wheel.
*/
int calc_turn()
{
 return (read_encoder(0)+read_encoder(1));
}
/*
NOTE THIS CODE WAS TAKEN FORM GROUP 1 FROM THE SPRING 2003
TERM
OF INTELLIGENT ROBOTICS. THE CODE WAS MODIFIED BY OUR GROUP.

CODE CALCULATED WHICH MOTOR OF THE ROBOT ROTATED THE
FASTEST USING
THE ENCODER VALUES OF THE ROBOT. IF THE DIFFERENCE OF THE
MOTOR OUTPUTS FOR THE
ROBOT WAS GREATER THAN A TURN_TOLERANCE THEN THE CODE
WOULD TRY TO REALIGN THE ORIENTATION
OF THE ROBOT.

THE CODE WAS NEVER IMPLEMENTED IN THE FINAL VERSION OF THE
ROBOT BECAUSE
OF THE DIFFERENCE OF POWER LEVELS IN OUR ROBOT'S MOTORS (ie
because the left motor was
always stronger then the right motor the code would always indicate left drift
even if no drift occured)
*/

/*
void corr_err()
{
int diff = enc1-enc0;// positive is right drift
reset_encode();
 if(diff > TURN_TOLERANCE)
 {
 printf("right drift");
 while(calc_turn()<diff)
 {
 motor(right_motor, POS_TURN);
 motor(left_motor, NEG_TURN);
 }
 }

 if(diff < (-1* TURN_TOLERANCE)
 {
 printf("left drift");
 while(calc_turn()<(-1*diff))
 {
 motor(right_motor, NEG_TURN);
 motor(left_motor, POS_TURN);
 }
 }
}
*/

/*

forward(): Code tried to make the robot move in a straight line. The motors were
allowed to pulse for .37 seconds and the went into idle for 1 second. The pulsing
allowed the viewing window of the camera to examine every inch of the floor, and
ideling the motors gave enough time for the camera to sense
the colored square before the motors began to move again. The power levels for
the motors were used after intensive testing ot the robot. In theory setting the
power levels of each motor to the same value would allow the robot the move in
a straight line, but this was not the case for the robot due to the huge difference
power difference between the left and right motors. In order to compensate for
the power difference the left motor power level was made to be significantly less
than the power level of the right motor.
*/
void forward()
{
 reset_encode();
 while(calc_turn()<20)
 {
 motor(LEFT_MOTOR,25);
 motor(RIGHT_MOTOR,65);

 }
 sleep(0.37);
 ao();
 sleep(1.0);
}
/*
reverse(): When routine is called the robot will preform a right turn
for 180 degrees. Both slot sensors are reset and the motors are allowed
to turn until the sum of the motor rotations equal TURN_TIME_REV. corr_err()
was supposed to called to compensate for drift, but given the
inaccurate readings of the motors the method was commented out.

*/
void reverse()
{
 reset_encode();
 printf("reverse\n");
 while(calc_turn()<TURN_ROTATIONS_REV)
 {
 motor(LEFT_MOTOR, POS_TURN);
 motor(RIGHT_MOTOR, NEG_TURN);
 }
 ao();
 //corr_err();
}
/*
left(): When routine is called the robot will preform a left turn
for 90 degrees. Both slot sensors are reset and the motors are allowed
to turn until the sum of the motor rotations equal TURN_TIME_L. corr_err()
was supposed to called to compensate for drift, but given the
inaccurate readings of the motors the method was commented out.
*/
void left()
{
 reset_encode();
 printf("left \n");
 while(calc_turn()<TURN_ROTATIONS_L)
 {
 motor(LEFT_MOTOR, NEG_TURN);
 motor(RIGHT_MOTOR, POS_TURN);
 }
 ao();
 //corr_err();
}
/*
roght(): When routine is called the robot will preform a right turn
for 90 degrees. Both slot sensors are reset and the motors are allowed
to turn until the sum of the motor rotations equal TURN_TIME_R. corr_err()
was supposed to called to compensate for drift, but given the
inaccurate readings of the motors the method was commented out.

*/
void right()
{
 reset_encode();
 printf("right \n");
 while(calc_turn()<TURN_ROTATIONS_R)
 {

 motor(LEFT_MOTOR, POS_TURN);
 motor(RIGHT_MOTOR, NEG_TURN);
 }
 ao();
 //corr_err();
}

void main()
{
 int foundyellow=0;
 start_press();
 init_camera();
 enable_encoder(0);
 enable_encoder(1);
 //clamp_camera_yuv();
 while(foundyellow==0)
 {

 if(trackRaw(MIN_BLUE_R, MAX_BLUE_R, MIN_BLUE_G, MAX_BLUE_G,
 MIN_BLUE_B, MAX_BLUE_B)>45)
 {
 ao();
 forwardclicks();
 sleep(.5);
 right();
 printf("right=blue %d\n", track_confidence);
 ao();
 sleep(2.0);

 }

 else if(trackRaw(MIN_GREEN_R, MAX_GREEN_R, MIN_GREEN_G,
MAX_GREEN_G,
 MIN_GREEN_B, MAX_GREEN_B)>45)
 {

 forward();
 }
 else if(trackRaw(MIN_ORANGE_R, MAX_ORANGE_R,
MIN_ORANGE_G, MAX_ORANGE_G,
 MIN_ORANGE_B, MAX_ORANGE_B)>45)
 {
 ao();
 forwardclicks();
 sleep(.5);
 left();

 printf("left=orange %d\n", track_confidence);
 ao();
 sleep(2.0);

 }
 else if(trackRaw(MIN_PINK_R, MAX_PINK_R, MIN_PINK_G,
MAX_PINK_G,
 MIN_PINK_B, MAX_PINK_B)>45)
 {
 ao();
 forwardclicks();
 sleep(.5);
 reverse();
 printf("reverse=pink %d\n", track_confidence);
 ao();
 sleep(2.0);
 }
 else if(trackRaw(MIN_YELLOW_R, MAX_YELLOW_R,
MIN_YELLOW_G, MAX_YELLOW_G,
 MIN_YELLOW_B, MAX_YELLOW_B)>45)
 {
 forwardclicks();
 ao();
 beep();
 foundyellow=1;
 }
 else if(track_confidence<45)
 {
 forward();
 printf("nothing %d\n", track_confidence);
 }

 }
}

3.0 Team Organization Evaluation and Plans

3.1 Initial Plan & Time Line

As the initial plan stated, there were three major tasks being divided into
separate groups working towards accomplishing the project goal and deadlines.

(a) The designer group consisting of the main design and secondary design
group were to design the chassis / sensor locations and wheel / motor
design.

(b) The coding was to be accomplished by dividing into three sub groups
namely Color recognition, velocity control and turning control.

(c) The third and final group was to complete the testing and de-bugging.

We had defined the basic group structure to function democratically. We had
decided not to delegate jobs to one specific person and decisions were to be
made on majority basis.

3.2 Team Organization Evaluation:

We would like to divide the evaluation into four parts based on various sub-group

3.2.1 Team Division and Job Allocation
3.2.2. Communication between teams
3.2.2 Testing & Performance
3.2.4 Final Demonstration

3.2.1 Team Division and Job Allocation
Overall, our team organization worked quite well. Each team member completed
his required individual tasks. However, with the impending time constraints and
strenuous work schedule of each member, we faced quite some difficulties
meeting our milestones and we re-adjusted most of the deadlines.

As described in the team organization plan, Prateek was to do the main design of
the robot and Kumaresh & Jonathan were to be involved in the secondary
design. The work on coding was shared as follows:

 Color Recognition : Jonathan
 Velocity Control : Prateek (Main) and Kumaresh
 Turning Control : Kumaresh

Finally , Testing / debugging was to be a combined effort .

Everyone contributed ideas which were incorporated into the robot design, which
helped ensure that the conceptual design was correct. When one member hit a
hurdle, other members contributed to the brainstorming process until a solution
was found.
Most importantly the team members understood each other’s time or potential
constraints and helped each other tide away to finishing the designated work.

3.2.2 Communication between Teams
The best virtue of our group was open communication between all the members.
We conducted lots of groups meetings lasting long and strenuous hours. All the
members were very particular in attending all the group meetings.
Each member was very specific in expressing his view towards the issues and
was patient to listen to other member’s point of view. Also team was univocal in
agreeing to decisions made.

3.2.3 Testing & Performance
The construction / design group had some setbacks initially as the two wheel
design failed due to excessive slipping of the wheels. Because of this, we had to
change the robot construction to a treaded design. Treaded design made us
change almost the whole robot apart from the housing. This also made us re-
design the original milestone planning.

Testing of the code on the final robot design took more time than we expected.
Mostly because, although we thought that we had a perfect design and good
code to back it up, the motor imbalance would not allow the robot to go straight.
We tried for hours and hours, first using a error correction code and later on
deleting the same, just to some how make the robot go straight. We changed the
speed and turning code again and again. However, the camera program didn’t
take much time to grab all the colors.

The robot turned well and detected the colors properly, but only could not go
straight.

3.2.4 Final Demonstration
As we could see , despite our tremendous effort, the final result was not
satisfactory as we could not run the robot straight and we had to keep navigating
the robot again and again to go in a straight line. Moreover, in the first run , the
robot could not recognize the color , which while testing , it did for numerous
number of time. However in the second run, the robot picked up all the colors
(except for blue at one occasion).
But overall, it was not a good performance and we definitely should have done
better.

3.3 Future plans for Team Organization and Planning

We think that we had planned our group activities and task allocation properly.
Only thing we should concentrate more in future is on putting extra efforts on
testing the robot on the demonstration room. Also we should rotate the group
activities so as all the members can be exposed to minuteness of each work. But
we will be retaining the democratic approach towards addressing issues as that
we found is very effective.

P.S : “The idea of dividing the team organization evaluation was taken from
submission by group 5 made for Project-1.”

