Project 1 – Sensing and Movement

Group 1
Jeremy Branecky
Camilo Reyes
Stephen Mckinney
Overview

- Team Organization & Task Allocation Proposal
- Success of Organization & Task Allocation Proposals
- Robot Design
- Robot Code
- Conclusion & Changes for Next Project
Team Organization

- Proposal
 - Rotating Leader
 - Rotating Tasks
 - Group Responsible for Every Phase
 - General Exposure to the Project
 - Even workload
Task Allocation

Proposal

- Tasks divided according to who wanted to do what
 - All members had much software background and little hardware background
 - Everyone needs to help
 - Members assigned tasks to oversee
 - Hard to estimate how much work was involved
Task Allocation

Proposal

Most important tasks to complete

- Hardware design – Team
- Hardware implementation – Stephen/Team
- Software design – Team
- Software implementation – Camilo/Team
- Robot testing – Team
- Paperwork organization – Jeremy
- Group presentation – Camilo
Team Organization

Success of Proposals

- Rotating Leader
 - Worked well most of the time
 - Created needed ideas as robot progressed
 - Created even workload
 - Hard to meet with everyone at the same time
 - Too crowded around robot or computer
Robot Design

- Basic two-motor design
 - Base design taken from Martin’s book
 - 2 3” wheels in back
 - Ski-like device in front
 - Low friction
 - Encoders
 - Increased accuracy in driving straight and turning
 - Camera in front
 - Less shade
Robot Design – Back wheels
Robot Design – Ski-like front
Robot Design – Encoders
Robot Design – Camera
Robot Code

- Multi-process approach
- Checking for color
 - Perform appropriate action upon seeing color
- Driving straight
 - Use encoders
- Turning
 - Use encoders
- General Flow
Robot Code – Multi-process Approach & Checking for color

```c
straight_pid = start_process(straight(ticks));  // start the rob
while(1) {
    // get the color
    color = getColor();
    if(color != -1){
        // color other than floor found, kill start process
        kill_process(straight_pid);
        stop_wheels();
        sleep(1.0);
        // get color again to make sure
        color = getColor();
        if (color == GREEN) {
            // go straight
            printf("Green - %d\n", conf);
            straight_pid = start_process(straight(ticks));
        }
    }
}
```
Robot Code – Driving Straight

- Encoders
 - Placed on smallest gear to achieve best accuracy
 - Compared as robot drove
 - Changes made when needed
Robot Code – Driving Straight

```c
// left encoder greater than right encoder
if (l_enc > r_enc)
{
    // robot is off to the left, give right more speed
    motor(R_MOTOR, STRAIGHT_SPEED);
    motor(L_MOTOR, (6*STRAIGHT_SPEED)/10);
}
else
{
    // right encoder greater than left encoder
    if (r_enc > l_enc)
    {
        // robot is off to the right, give left more speed
        motor(L_MOTOR, STRAIGHT_SPEED);
        motor(R_MOTOR, (7*STRAIGHT_SPEED)/10);
    }
}
```
Robot Code – Turning

- Measure number of encoder ticks needed
- Compare number as robot turns
 - Send one wheel forward and one backward

```c
// measure encoder ticks for turn
while (tics < tot_tics) {
    // read the right encoder
    r_enc = read_encoder(R_ENCODER);
    // read the left encoder
    l_enc = read_encoder(L_ENCODER);
    // add left and right encoder
    tics = r_enc + l_enc;
    // send motors correct speed
    motor(R_MOTOR, speed);
    motor(L_MOTOR, -speed);
}
```
Robot Code – General Flowchart

Start

Straight Process

Color Found

yes

Kill Straight Process

no

Perform Function

End
Conclusions & Changes for Next Project

- Conclusions
 - Rotating leader works well
 - Workload was divided evenly
 - Project 1 was a success

- Changes for next project
 - Don’t wait until the last 20 hours
 - Work on a faster design
 - More individual work