SOFTWARE DESIGN.

PROJECT 3.

DELIBERATION AND ACTING.

Following some of the Murphys’ guidelines in the design of a behavioral System we work with the hardware sub-team in:

- Reading and understanding the specification of project n. 3 which are: to design, build, program, and demonstrate an autonomous robotic system that carries out the task to efficiently find and move a set of target objects in the environment to one or more locations within the environment and, if possible, to find and disable a moving dynamic object.
- Describe the task and the environment which are: Details of the task are not going to be enumerated here for briefness.
- Describe the robot: which is described in the hardware report.
- Describe how the robot should act in response to its environment: In this part we worked first in the primitive behaviors:

 - **move_t()**: move_to_target(), the robot moves from its actual position \((r_x, r_y)\) to the nearest orange cube.
 - **move_d()**: move_to_destination(), the robot moves from its actual position \((r_x, r_y)\), with an orange cube, to the nearest square destination.
 - **cam()**: look_for_target(), the robot looks for orange cubes, using the camera.
 - **tape()**: look_for_destination(), the robot looks for square destinations, using the IR-sensors.
 - **look_for_DrH_robot()**, the robot looks for Dr. Hougen’s robot using the camera and
 - **signal_done()** when the robot puts an orange cube in the destination it beeps.

Second, we worked in the deliberative part and we design the following functions:

The mission_planner which correspond to our main(), it receives the coordinates of the targets, destinations and the initial robot’s position, it initialize the distance_t() process which call the move_t(); the color() process, which look_for_target() and directs the robot to go to the nearest destination with the function distance_d(). This process looks_for_DrH_robot() too, using as a perceptual schema the blue color.
The navigator was implemented implicit in the move_t() and move_d() functions. The robot is moving in straight lines following the “x” and “y” directions so that, each path consist of a triangle path.

The pilot correspond with the functions: move_t() and move_d() which accomplish the necessary actions to go from one position to another, for example, turn(90); forward(100).

The cartographer, which has track of the orange cubes, square destinations and the actual position of the robot. This function is distributed between various processes: the color(), because if a cube is moved from its position to the destination, the coordinates of the cube are set to (-1,-1), and if an unknown cube is encountered, the world model is actualized with the coordinates of the new cube which correspond to the current position of the robot; by the other hand the function move_t() actualizes the WM with the current position of the robot, this is done at the end of each segment.

The low_level controller correspond with the functions: forward(x), which move the motors forward; turn(y), which turns the robot y = 90 or y = 180 grades;

The sensing part correspond with: encoder_dist(x,*y) which read the encoders to have track of the distance walked and actualizes the WM; tape(), which uses the IR sensors to look for the black tape destinations; the cam(), which is looking for the orange and blue colors.

In one word, we follow the Managerial Architecture.