Project 3 Presentation

Group 2:
Joshua Shuller
Amandeep Gill
Celi Sun
Hardware Design

- Chassis
 - Four-wheeled drive with low center of gravity.
 - Claw unit with a small motor mounted in the front.

- Motors
 - Two motors drive powers.
 - One small motor drives graper.
 - One servo turn CMUCam.
Hardware Design

Sensors

- One CMUCam
- Two encoders detect two rear wheels.
- Two reflectivity sensors used to line up.
Software Design

Hybrid/Deliberative

- Planning: get all cubes to closest goal.
- code could be described as behaviors being different functions of the code.

For example: goStraight()
 turnWithEncoders()
Software Design

- **Navigation:**
 - Use CMUCam to turn when there was a cube within 2' of robot.
 - Otherwise, use encoders to turn.
 - Use encoders for distance travelled measurements.
 - Use Reflectivity sensors to align with black tape in a goal location.
Performance

- Moderately Successful:
 - 59 Points - Got 3 goals and one false positive goal.
 - With sensor type and precision limitations, software did a reasonably good job of navigation.
Summary

- Positive Aspects of Software
 - Sensor Fusion of CMUCam and Encoders to achieve faster turning.
 - Location and Direction correction by Centering itself inside of the Goals.
Summary

- Negative Aspects of Software:
 - Fail to use a cube to be landmark.
 - Can’t recover when lost.
 - Memory and Speed constraints more sophisticated path planning.
 - A bunch-o-bugs.