
CS 2413 Fall 2019 1

Project 3 – Hash Tables (Hash Maps)
Computer Science 2413 – Data Structures – Fall 2019

Due by 11:59 pm CST on Wednesday, 13 November 2019

This project is individual work. Each student must complete this assignment independently.

User Request:

“Create a simple system to read, store, merge, purge, sort, search, and write drilling data

using a more complete array library, a linked list library, error checking, user interaction,

and providing fast lookup by timestamp.”

Objectives:

1 Use C++ file IO to read and write files, while using C++ standard I/O (cin and cout)

for user interaction, using appropriate exception handling and giving appropriate error

messages.

5 points

2 Encapsulate primitive arrays inside a somewhat complete templated class that

provides controlled access to the array data, retains information on array capacity and

use, and can be used to store data of any class or primitive type. Integrate appropriate

exception handling into the templated array class.

5 points

3 Efficiently sort and search the data based on the field specified by the user (using

comparator).

5 points

4 Store drilling data in a linked list maintained in order, sorted by timestamp. Add and

remove entries from the drilling record linked list while maintaining its order.

Integrate appropriate exception handling into classes that implement linked lists.

5 points

5 Create and use a hash table with drilling record timestamps as keys for efficient

insertion and retrieval of drilling data based on time. This hash table must store

records within an array and resize appropriately to maintain efficiency.

25 points

6 Encapsulate hash tables inside a templated class that provides controlled access to the

hash table data, retains information on hash table capacity and load factor, and can be

used to store data of any class or primitive type.

10 points

7 Handle collisions in the hash table using separate chaining implemented using your

OULinkedList class.

10 points

8 Integrate appropriate exception handling into the templated hash table class. 5 points

7 Provide a design document explaining and justifying alternative implementation

choices for a hash table.

10 points

8 Develop and use an appropriate design. 10 points

9 Use proper documentation and formatting. 10 points

Description:

For this project, you will revise and improve Driller 2.0 from Project 2 in one important way. You are

encouraged to reuse and build on your code from Project 2. Driller 3.0 will have the same basic

functionality as Driller 2.0, but it will have one major change “under the hood”– because it is believed

CS 2413 Fall 2019 2

that users will most often want to search for drilling data by timestamp, the list of timestamps will be

used as keys to a hash table that stores pointers to the associated data. This will allow for drilling data to

be looked up by timestamp in constant time, that is, in Θ(1) time, unless the hash table becomes too full

or the data are extremely skewed in some unlikely way. Of course, your table should resize if it becomes

too full. (Note that Driller 3.0 will still store the list of drilling data using linked list data structures

during initial reading, merging, and purging and will still store the list of drilling data using your

templated array for sorting and searching using fields besides timestamp.)

Operational Issues:

From a user interface perspective, Driller 3.0 will behave as described for Driller 2.0, except that there

will be one additional data saving/display option, as follows.

“Enter (o)utput, (s)ort, (f)ind, (m)erge, (p)urge, (r)ecords, (h)ash table, or (q)uit: ”

If the user enters ‘h’ for hash table display, Driller 3.0 will list the drilling records, one drilling record

per line, in the order they are stored in the hash table, each prepended with the bucket number (hash

code) where it is stored, followed by a colon. If a bucket is empty, the bucket number and colon should

be skipped. If a bucket overflows, the overflow items should be prepended with “OVERFLOW:” and be

displayed in their overflow order before proceeding to the next bucket. There should also be a blank line

displayed between buckets. All of this will be followed by a blank line, then a line giving some data

about the hash table, namely, its “base capacity” (the size of the array, not counting any overflow), its

“total capacity” (the size of the array plus any separate chaining links used for overflow), and its load

factor. This is immediately followed by the usual line stating the number of data lines read, valid drilling

records read, and drilling records in memory. As with the other data saving/displaying options, if the

user enters ‘h’ for hash display, Driller 3.0 will prompt for an output filename and send the output to

standard out if no file name is provided. Note that this is thought of as a debug display as it is unlikely to

be of use to an end user but may help you to debug your project. Examples follow.

CS 2413 Fall 2019 3

Implementation Issues:

In most areas, Driller 3.0 will be implemented just as was Driller 2.0. This includes how Driller reads

files and prints data, carries out user interaction via standard in and standard out, encapsulates C

primitive arrays, how exception handling is implemented for arrays and similar classes, and how the list

of drilling records is stored in a linked list when data is initially read in and when it is being merged and

purged. The big implementation change will be the data structure used in the code to find drilling data

based on timestamp. For Driller 3.0, you are no longer allowed to sort and search by timestamp using

the array, you need to use a hash table instead. This hash table will use an array of OULinkedLists to hold

the data and resolve collisions through separate chaining. For this hash table, we will keep the hash

function simple by using adding up the ASCII values of the characters in each timestamp and wrapping

hash values that are too large for the array using modulus table capacity. However, to avoid too many

collisions for likely data subsampling, we will make the table capacity always be a prime number,

following a predefined resizing schedule. The table will resize to the next larger size in the schedule

when it exceeds its maximum load factor (which will have a default value of 80% but should be able to

be set to other values via a constructor), and resize down to the next smaller size in the schedule when it

falls below its minimum load factor (which will have a default value of 30% but should be able to be set

to other values via the same constructor).

Of course, there are many alternatives that could be selected for hash table implementations. For this

reason, you should include a design document with your submission. Please make this a PDF file and

name it “design.pdf” in your submission. In this document, you should describe one alternative hash

function you could have chosen and one alternative collision resolution strategy that you could have

chosen, along with a brief analysis of how these alternatives would influenced the complexity and

efficiency of your code.

Note that when you first create your hash table in Driller, you will know the amount of data it is to

contain. This is because you will wait to create it until you have read in the first file of data. Similarly,

when you merge or purge data, you will use your adjusted list to create a new hash table for the adjusted

CS 2413 Fall 2019 4

amount of data. This means that when Driller creates a new hash table, it should specify this value.

However, your member function for adding entries to the hash table should be capable of automatic

resizing if the table exceeds the maximum load factor or falls below the minimum load factor.

Be sure to use all provided code, use efficient mutator methods (e.g., don’t make new arrays unless

doubling or halving the array), and check whether memory is available on the stack when using new in

your ResizableArray, OULinkedList, and HashTable classes and throw ExceptionMemoryNotAvailable if

new returns NULL.

Be sure to use good object-oriented design in this project. That includes appropriate use of

encapsulation, inheritance, overloading, overriding, accessibility modifiers, etc.

Be sure to use good code documentation. This includes header comments for all classes and methods,

explanatory comments for each section of code, meaningful variable and method names, consistent

indentation, etc.

You may write your program from scratch or may start from programs for which the source code is

freely available on the web or through other sources (such as friends or student organizations). If you do

not start from scratch, you must give a complete and accurate accounting of where all of your code came

from and indicate which parts are original or changed, and which you got from which other source.

Failure to give credit where credit is due is academic fraud and will be dealt with accordingly.

Due Date:

You must submit an electronic copy of your Driller 3.0 project to zyLabs and send the score from

zyLabs to Canvas and also submit your design document to the appropriate dropbox in Canvas by 11:59

pm CST on Wednesday, 13 November 2019.

