
CS 2413 Fall 2018 1

Project 4 revision 2 – AVL Trees
Computer Science 2413 – Data Structures – Fall 2018

Due by 11:59 pm CST on Thursday, 6 December 2018

This project is individual work. Each student must complete this assignment independently.

User Request:

“Create a simple system to efficiently read, store, merge, purge, sort, search, and write

NVRA data using a more complete array library, a linked list library, error checking, user

interaction, and providing fast lookup by record ID.”

Objectives:

1 Use C++ file IO to read and write files, while using C++ standard I/O (cin and cout)

for user interaction, using appropriate exception handling and giving appropriate error

messages.

5 points

2 Encapsulate primitive arrays in a templated class that provides controlled access to the

data, retains information on array capacity and use, and can be used to store data of

any class or primitive type. Integrate appropriate exception handling into the

templated array class.

5 points

3 Efficiently sort and search the data based on the field specified by the user (using

comparator).

5 points

4 Encapsulate linked lists in a templated class that provides controlled access to the

data, retains information on list size, and can be used to store data of any class or

primitive type. Integrate appropriate exception handling into the templated linked list

class.

5 points

5 Encapsulate hash tables in a templated class that provides controlled access to the

data, retains information on table capacity and load factor, can be used to store data of

any class or primitive type, and handles collisions using separate chaining. Integrate

appropriate exception handling into the templated hash table class.

10 points

6 Store NVRA data in an AVL tree sorted by record ID. 20 points

7 Find NVRA data stored in the AVL tree based on record ID. 5 points

8 Remove NVRA data from the AVL tree based on record ID. 10 points

9 Provide pre-order, in-order, and post-order traversals of the AVL tree. 10 points

10 Encapsulate AVL trees inside a templated class that provides controlled access to the

AVL tree data, retains information on AVL tree size (number of entries), and can be

used to store data of any class or primitive type.

10 points

11 Integrate appropriate exception handling into the templated AVL tree class. 5 points

12 Develop and use an appropriate design. 5 points

13 Use proper documentation and formatting. 5 points

CS 2413 Fall 2018 2

Description:

For this project, you will revise and improve VoteR 3.0 from Project 3 in one important way. You are

encouraged to reuse and build on your code from Project 3. VoteR 4.0 will have the same basic

functionality as VoteR 3.0 but it will have one major change “under the hood”– because it was very

time-inefficient to keep the list of NVRA records in a linked list that was always sorted by record ID

while data was read in, VoteR 4.0 will instead keep an AVL tree of NVRA data using record IDs as keys.

Note that VoteR 4.0 will still copy the data to a hash table for fast lookup by record ID and will still store

the data to be sorted and searched using fields besides record ID using a resizable array.

Operational Issues:

From a user interface perspective, VoteR 4.0 will behave as described for VoteR 3.0, except that the

merge and purge operations may take noticeably less time and there will be three additional data

printing/display options: ‘pre’, ‘in’, and ‘post’ for pre-, in-, and post-order traversal of the AVL tree,

respectively. Note that, like the ‘h’ display of VoteR 3.0, these are thought of as a debug displays as they

are unlikely to be of use to an end user but may help you to debug your project. An example follows.

(Relatedly, note that option ‘r’ has been removed, since the associated linked list has been removed.)

CS 2413 Fall 2018 3

Implementation Issues:

In most areas, VoteR 4.0 will be implemented just as was VoteR 3.0. This includes how VoteR reads files

and prints data; carries out user interaction via standard in and standard out; encapsulates C primitive

arrays; implements exception handling for arrays, linked lists, and hash tables; and stores the lists of

NVRA records in both an array (for sorting and finding based on most data fields) and a hash table (for

fast lookups based on record ID). The big implementation change will be the data structure used to store

the NVRA records while reading files and merging and purging data. For VoteR 4.0, you are no longer

allowed to store this data in a linked list; you need to use an AVL tree instead.

In particular, any time a file is read in, each valid record should be added, one at a time, to an initially

empty AVL tree, with invalid records rejected without any attempt to add them to the tree and duplicates

rejected when the insert method of your AVL class returns false.

• If the file just read in is the first data file read in when VoteR 4.0 starts up, the tree will be

retained for future use (such as merging and purging, and for the debug displays of pre-order, in-

order, and post-order traversal) and its data items will be copied to the resizable array and the

hash table.

• If the file just read in was read in for the purpose of merging, then the just-created AVL tree and

the previously existing AVL tree will be merged by conducting an in-order traversal of both trees

in parallel, adding all the unique items and all of the more recent duplicates to a brand-new,

previously empty AVL tree. After this merge operation, the two older trees will be discarded,

along with the old array and the old hash table, and the data items from the new tree will be

copied to the resizable array and the hash table.

• If the file just read in was read in for the purpose of purging, then the just-created AVL tree and

the previously existing AVL tree will be combined by conducting an in-order traversal of both

trees in parallel while adding all and only the unique items of the original tree to a brand-new,

previously empty AVL tree. the new tree (containing the records to be purged) and calling

remove() on each of its records. After this purge operation, the two older trees of records to be

purged will be discarded, along with the old array and the old hash table, and the data items from

the new purged tree will be copied to the resizable array and the hash table.

Note that your remove() function in AVLTree must replace an interior node with its in-order successor.

Note that each time you create a new TemplatedArray and a new HashTable from an AVL tree, you

should use a constructor that specifies how many elements you plan to insert. Moreover, copying to the

resizable array and the hash table should be accomplished by conducting an in-order traversal of the tree

and calling insert from both TemplatedArray and HashTable on each item.

While this description suggests that using the AVL tree in place of the linked list for reading in files and

checking for duplicates is more time-efficient, you should consider whether that is really the case. For

this reason, you should include a design document with your submission. Please make this a PDF file

and name it “design.pdf” in your submission. In this document, you should analyze the time efficiency

of reading into an AVL rather than a linked list while checking for duplicates. In this document, you

should also analyze the time and space efficiency of the processes described above for merging and

purging data by reading the new file into its own tree, then using the two existing trees to generate a new

tree.

Be sure to use all provided code, use efficient mutator methods, and check whether memory is

available on the stack when using new in your TemplatedArray, OULinkedList, HashTable, and AVLTree

classes and throw ExceptionMemoryNotAvailable if new returns NULL.

CS 2413 Fall 2018 4

Be sure to use good object-oriented design in this project. That includes appropriate use of

encapsulation, inheritance, overloading, overriding, accessibility modifiers, etc.

Be sure to use good code documentation. This includes header comments for all classes and methods,

explanatory comments for each section of code, meaningful variable and method names, consistent

indentation, etc.

You may write your program from scratch or may start from programs for which the source code is

freely available on the web or through other sources (such as friends or student organizations). If you do

not start from scratch, you must give a complete and accurate accounting of where all of your code came

from and indicate which parts are original or changed, and which you got from which other source.

Failure to give credit where credit is due is academic fraud and will be dealt with accordingly.

Due Date:

You must submit an electronic copy of your VoteR 4.0 project to zyLabs and design document to the

appropriate dropbox in Canvas by 11:59 pm CST on Thursday, 6 December 2018.

