
CS 2413 Fall 2018 1

Lab 2 – Arrays, Pointers, Structures, and Functions in C++
Computer Science 2413 – Data Structures – Fall 2018

Due by 11:59 pm CST on Friday, 07 September 2018

This lab is individual work. Each student must complete this assignment independently.

User Request:

“Create a simple program to read, store, and write NVRA data.”

Objectives:

1 Satisfy all requirements for input, input processing, and output. 4 points

2 Use arrays to store the data as it is read in. 4 points

3 Allocate and deallocate memory dynamically using new and delete. 4 points

4 Complete/use the given design elements, including two structures and one function

(plus main).

4 points

5 Use proper design, coding style, documentation, and formatting. 4 points

Description:

This lab builds on Lab 1 by requiring the use of four important building blocks for C++ programs—

arrays, pointers, structures, and functions.1 Lab 2 does this by adding operational requirements and

implementation requirements to those already present in Lab 1. These additional requirements define

VoteR 0.2. Other than these requirements, VoteR 0.2 must satisfy all requirements of VoteR 0.1.

Operational Issues:

In contrast to VoteR 1.0, VoteR 2.0 will read and store all data before sending any output to cout. Once

the data is read in and checked for internal consistency (as described in Lab 1), the data will be sent to

cout in reverse row order. Note that you do not have to sort the data. Whatever the order in which

records appear in the file, VoteR 2.0 will print them in reverse order. Also, note that the order of the data

columns will remain unchanged. Finally, note that all errors (duplicate record IDs and invalid data) will

be sent to cout before any records are sent there.

Implementation Issues:

In addition to the implementation requirements from Lab 1, you must use arrays, pointers, structures,

and at least one function in this assignment. Arrays will be used to store the data and pointers will be

used to refer to memory that is dynamically allocated. Note that the memory must be dynamically

allocated, because in many cases it is not possible to know how much data will be found in a file at the

time your code is written. Therefore, it is important to know how to dynamically allocate memory.

VoteR 0.2 must initially allocate enough space to hold the data for 10 NVRA records. As it reads the file,

if that allocation proves to be insufficient, VoteR 0.2 will ask for a new allocation twice that large (using

1Note that arrays, pointers, structures, and functions are part of C as well as C++. In fact, these building blocks are less

important in C++ than they were in C, because C++ provides important alternatives to these, such as vectors, references,

classes, and methods. However, we're focusing on understanding the basic building blocks from which more complex designs

can be built.

CS 2413 Fall 2018 2

new), copy the old data to the new space, deallocate the old data space (using delete), set the old pointer

to the deallocated memory to NULL, and continue reading from the file. If that allocation also proves to be

insufficient, VoteR 0.2 will repeat the doubling, copying, deallocating, and resuming process, continuing

in this way until the entire file is read in. This process of dynamically doubling the array size as the data

is read in must be modularized within a function. This function must be tested and shown to work

correctly using unit tests that will be included in the zyLab test bench, as well as work in the final,

integrated program. This function will be named “doubleNvraArray” and its required signature follows:

nvraArray* doubleNvraArray(nvraArray* currentNvraArray)

The data for each record will be stored in a structure named “nvraRecord,” which is defined as follows:

struct nvraRecord {
 int nums[21]; // holds the numeric data, in column order
 std::string strings[3]; // holds the string data, in column order
};

The array of records will be a part of a structure that also records the capacity of the array, defined as

follows:

struct nvraArray {
 int capacity; // maximum capacity, in records
 nvraRecord* data = NULL; // pointer to array of records
};

Note that this lab does not require you to create any classes or to use object-oriented design at all. In

fact, you don’t even need to create any functions except the main function and doubleNvraArray.

Nonetheless, you must use good programming style and documentation, including making your code

modular, using explanatory comments for each section of code, using meaningful variable and method

names, using consistent indentation, etc.

You may write your program from scratch or may start from programs for which the source code is

freely available on the web or through other sources (such as friends or student organizations). If you do

not start from scratch, you must give a complete and accurate accounting of where all of your code came

from and indicate which parts are original or changed, and which you got from which source(s). Failure

to give credit where credit is due is academic fraud and will be dealt with accordingly.

You may use existing classes and data structures (such as vectors) in your code for reading and parsing

the input data. However, the doubleNvraArray function must be written from scratch and use only

pointers and primitive C/C++ arrays.

Due Date:

You must submit an electronic copy of your code by 11:59 pm CST on Friday, 07 September 2018.

