
Project 4 Revision 2– AVL Trees
Computer Science 2413 – Data Structures – Fall 2017
Due by 11:59 pm CST on Thursday, 7 December 2017

This project is individual work. Each student must complete this assignment independently.

User Request:

“Create a simple system to read, efficiently merge, efficiently purge, sort, search, and write
eclipse data with error checking and providing fast lookup by catalog number.”

Objectives:

1 Use C++ file IO to read and write files, while using C++ standard I/O (cin and cout)
for user interaction, using appropriate exception handling and giving appropriate error
messages.

5 points

2 Encapsulate primitive arrays inside a templated class that provides controlled access to
the array data, retains information on array capacity and use, and can be used to store
data of any class or primitive type. Integrate appropriate exception handling into the
templated array class.

5 points

3 Efficiently sort and search the data based on the field specified by the user. Integrate
appropriate exception handling into classes that implement searching and sorting.

5 points

4 Encapsulate linked lists inside a templated class that provides controlled access to the
linked-list data, retains information on linked list size, and can be used to store data of
any class or primitive type. Integrate appropriate exception handling into the
templated linked list class.

5 points

5 Encapsulate linked hash tables inside a templated class that provides controlled access
to the linked hash table data, retains information on linked hash table capacity and
load factor, and can be used to store data of any class or primitive type. Integrate
appropriate exception handling into the templated linked hash table class.

10 points

6 Store eclipse data in an AVL tree sorted by catalog number. 20 points

7 Find eclipse data stored in the AVL tree based on catalog number. 5 points

8 Remove eclipse data from the AVL tree based on catalog number. 15 points

9 Provide an in-order traversal of the AVL tree. 5 points

10 Encapsulate AVL trees inside a templated class that provides controlled access to the
AVL tree data, retains information on AVL tree size (number of entries), and can be
used to store data of any class or primitive type.

10 points

11 Integrate appropriate exception handling into the templated AVL tree class. 5 points

12 Develop and use an appropriate design. 5 points

13 Use proper documentation and formatting. 5 points

CS 2413 Fall 2017 1

Description:

For this project, you will revise and improve EclipseR 3.0 from Project 3 in one important way. You are
encouraged to reuse and build on your code from Project 3. EclipseR 4.0 will have the same basic
functionality as EclipseR 3.0 but it will have one major change “under the hood”– because it was very
time-inefficient to keep the list of eclipse data in a linked list that was always sorted by catalog number
while data was read in, merged, and purged, EclipseR 4.0 will instead keep an AVL tree of eclipse data
using catalog numbers as keys. This will allow for data for each eclipse to be inserted and removed in
Θ(log2 n) time rather than Θ(n) time (where n is the number of eclipses in the data).

Note that EclipseR 4.0 will still copy the eclipse data to a linked hash map for fast lookup by catalog
number and will still store the list of eclipse data to be sorted and searched using fields besides catalog
number using a resizable array.

Operational Issues:

From a user interface perspective, EclipseR 4.0 will behave as described for EclipseR 3.0, except that
the merge and purge operations may take noticeably less time and there will be two additional data
printing/display options: ‘R’ for pre-order traversal of the AVL tree and ‘T’ for post-order traversal of
the AVL tree.1 Note that, like the ‘H’ display of EclipseR 3.0, these are thought of as a debug displays as
they are unlikely to be of use to an end user but may help you to debug your project.

Implementation Issues:

In most areas, EclipseR 4.0 will be implemented just as was EclipseR 3.0. This includes how EclipseR
reads files and prints data, carries out user interaction via standard in and standard out, encapsulates C
primitive arrays, implements exception handling for arrays and similar classes, and stores the lists of
eclipses as linked lists. The big implementation change will be the data structure used to store the
eclipses during merging and purging. For EclipseR 4.0, you are no longer allowed to store this data in a
linked list; you need to use an AVL tree instead. Similarly, display/printing option C should now be
accomplished by performing an in-order traversal of the AVL tree.

The only libraries you may use for this assignment are iostream, iomanip, string, and fstream
(#include <iostream>, #include <iomanip>, #include <string>, #include <fstream>).

Be sure to use good object-oriented design in this project. That includes appropriate use of
encapsulation, inheritance, overloading, overriding, accessibility modifiers, etc.

Be sure to use good code documentation. This includes header comments for all classes and methods,
explanatory comments for each section of code, meaningful variable and method names, consistent
indentation, etc.

You may write your program from scratch or may start from programs for which the source code is
freely available on the web or through other sources (such as friends or student organizations). If you do
not start from scratch, you must give a complete and accurate accounting of where all of your code came
from and indicate which parts are original or changed, and which you got from which other source.
Failure to give credit where credit is due is academic fraud and will be dealt with accordingly.

1 Since ‘pre’ and ‘post’ both begin with ‘p,’ the mnemonic here is that in a pre-order traversal of a tree, the root ‘R’ of that
tree is displayed before either of its sub-trees ‘T,’ whereas with a post-order traversal, both sub-trees are displayed before
the root. Also, ‘r’ is the second consonant in ‘pre’ and ‘t’ is the third consonant in ‘post.’

CS 2413 Fall 2017 2

Due Date:

You must submit an electronic copy of your Eclipse project to the appropriate dropbox in Canvas by
11:59 pm CST on Thursday, 7 December 2017.

Important Note:

To ensure proper object-oriented design while making your libraries templated, it is a good idea to
overload the comparison operators (e.g., operator==, operator>, operator<) for the Eclipse class.

CS 2413 Fall 2017 3

