
Project 3 – Hash Tables (Hash Maps)
Computer Science 2413 – Data Structures – Fall 2017
Due by 11:59 pm CST on Thursday, 16 November 2017

This project is individual work. Each student must complete this assignment independently.

User Request:

“Create a simple system to read, merge, purge, sort, search, and write eclipse data with
error checking and providing fast lookup by catalog number.”

Objectives:

1 Use C++ file IO to read and write files, while using C++ standard I/O (cin and cout) 
for user interaction, using appropriate exception handling and giving appropriate error 
messages.

5 points

2 Encapsulate primitive arrays inside a templated class that provides controlled access to
the array data, retains information on array capacity and use, and can be used to store 
data of any class or primitive type. Integrate appropriate exception handling into the 
templated array class.

5 points

3 Efficiently sort and search the data based on the field specified by the user. Integrate 
appropriate exception handling into classes that implement searching and sorting.

5 points

4 Store eclipse data in a linked list maintained in order, sorted by catalog number. 
Remove entries from the eclipse linked list while maintaining its order. Integrate 
appropriate exception handling into classes that implement linked lists.

5 points

5 Use a linked hash table with eclipse catalog numbers as keys for efficient retrieval of 
eclipse data based on catalog number.

25 points

6 Encapsulate linked hash tables inside a templated class that provides controlled access
to the linked hash table data, retains information on linked hash table capacity and 
load factor, and can be used to store data of any class or primitive type.

10 points

7 Integrate appropriate exception handling into the templated linked hash table class. 5 points

8 Provide a design document explaining and justifying implementation choices for your 
linked hash table.

10 points

7 Use a sophisticated hash function and/or collision resolution method. 10 bonus
points

8 Develop and use an appropriate design. 15 points

9 Use proper documentation and formatting. 15 points

Description:

For this project, you will revise and improve EclipseR 2.0 from Project 2 in one important way. You are 
encouraged to reuse and build on your code from Project 2. EclipseR 3.0 will have the same basic 
functionality as EclipseR 2.0 but it will have one major change “under the hood”– because it is believed 
that users will most often want to search for eclipse data by catalog number, the list of catalog numbers 
will be used as keys to a hash table that stores pointers to the associated data. This will allow for eclipse 

CS 2413 Fall 2017 1



data to be looked up by catalog number in constant time, that is, in Θ(1) time. (Note that EclipseR 3.0 
will still store the list of eclipse data using linked list data structures during merging and purging and 
will still store the list of eclipse data using a resizable array during sorting and searching using fields 
besides catalog number.)

Operational Issues:

From a user interface perspective, EclipseR 3.0 will behave as described for EclipseR 2.0, except that 
there will be two additional data printing/display option, as follows.

If the user enters ‘H’ for Hash display, EclipseR 3.0 will list the eclipse data, one eclipse per line, in the 
order they are stored in the hash table, each prepended with the bucket number (hash code) where it is 
stored. If a bucket is empty, the bucket number should still be displayed, followed by “NULL.” If a 
bucket contains more than one item, each should be listed in its order within the bucket, one per line. If a
bucket overflows somewhere besides another bucket, the overflow items should be prepended with 
“OVERFLOW:” and be displayed in their overflow order before proceeding to the next bucket. There 
should also be a blank line displayed between buckets. Note that this is thought of as a debug display as 
it is unlikely to be of use to an end user but may help you to debug your project.

If the user enters ‘L’ for Linked display, EclipseR 3.0 will list the eclipse data, one eclipse per line, in 
the order they are stored in the linked list embedded in the hash table. Note that this should be the same 
order as seen with the ‘C’ (catalog number) option that runs through the linked list used for merging and
purging.

Implementation Issues:

In most areas, EclipseR 3.0 will be implemented just as was EclipseR 2.0. This includes how EclipseR 
reads files and prints data, carries out user interaction via standard in and standard out, encapsulates C 
primitive arrays, how exception handling is implemented for arrays and similar classes, and how the list 
of eclipse data is stored in a linked list when data is being merged and purged. The big implementation 
change will be the data structure used in the code to find eclipse data based on catalog number. For 
EclipseR 3.0, you are no longer allowed to sort and search by catalog number using the array, you need 
to use a hash table instead. For this reason, you should use a linked hash table where the linked list 
interwoven into the table is ordered by catalog number.

Beyond these requirements, you have a lot of freedom to design your hash table implementation. For 
this reason, you should include an design document with your submission. Please make this a PDF file 
and name it “design.pdf” in your submission. In this document, you should describe the hash function 
you chose, the bucket size you chose for your hash table, the hash collision resolution strategy that you 
chose, and the load factor you chose, along with design justifications for each.

You are free to use any hash function you wish, so long as it results in hash codes within the bounds for 
your hash table. If you choose to implement a hash function that distributes keys close to uniformly and 
randomly throughout the table, you should note this in your documentation for the TA, so that he can 
assign you bonus points (up to 5 points, depending on the sophistication of the hash function used and 
your explanation of why its distribution is close to uniform and random).

You are free to use any bucket size for your hash table and any hash collision resolution strategy you 
wish. You should justify both of these design choices, noting that some bucket sizes may be more 
appropriate for some collision resolution strategies and vice versa. If you choose to implement a 
particularly sophisticated collision resolution strategy, you should note this in your documentation for 
the TA, so that he can assign you bonus points (up to 5 points, depending on the sophistication of the 

CS 2413 Fall 2017 2



strategy and your explanation of why it is appropriate for your hash table).

Note that when you first create your hash table, you will know the amount of data it is to contain. This is
because you can wait to create it until you have read in the first file of data. Similarly, when you merge 
or purge data, you can use your adjusted list to create a new hash table for the adjusted amount of data. 
However, you should not attempt to fill your hash table completely, because this will almost surely 
cause too many collisions and degrade its performance below that of a sorted array. Instead, you should 
choose an appropriate load factor for your table.

If you choose to do so, you may use the linked list of the hash table for the merge/purge linked list. If 
you choose to do this, be sure to note it in the design document.

You should implement the display/printing options as follows.

C should be accomplished by traversing the linked list used for merging and purging.

O should be accomplished by traversing the array used for searching and sorting.

L should be accomplished by traversing the linked list embedded within the hash table. (Note that this 
might be the same linked list as for option C.)

H should be accomplished by traversing the hash table in bucket order. If your buckets are larger than 
size one, each bucket should be traversed in order before proceeding to the next bucket. If your hash 
table overflows to anything besides other buckets, the overflow data structures should also be traversed 
in order before proceeding to the next bucket.

The only libraries you may use for this assignment are iostream, iomanip, string, and fstream 
(#include <iostream>, #include <iomanip>, #include <string>, #include <fstream>).

Be sure to use good object-oriented design in this project. That includes appropriate use of 
encapsulation, inheritance, overloading, overriding, accessibility modifiers, etc.

Be sure to use good code documentation. This includes header comments for all classes and methods, 
explanatory comments for each section of code, meaningful variable and method names, consistent 
indentation, etc.

You may write your program from scratch or may start from programs for which the source code is 
freely available on the web or through other sources (such as friends or student organizations). If you do 
not start from scratch, you must give a complete and accurate accounting of where all of your code came
from and indicate which parts are original or changed, and which you got from which other source. 
Failure to give credit where credit is due is academic fraud and will be dealt with accordingly.

Due Date:

You must submit an electronic copy of your Eclipse project and design document to the appropriate 
dropbox in Canvas by 11:59 pm CST on Thursday, 16 November 2017.

CS 2413 Fall 2017 3


