Project #1 rev 2

Computer Science 2334
Fall 2013
This project is individual work. Each student must complete this assignment independently.
User Request:
“Create a simple magazine data system.”
Milestones:
1. Use program arguments to specify a file name. 10 points
2. Use simple File I/O to read a file. 10 points
3. Create an abstract data type (ADT) to store information on a single magazine. 15 points
4. Create an ADT that abstracts the use of an array of magazines (i.e., a list of 15 points
magazines).
5. Implement a program that allows the user to search the list of magazines as described 20 points
below.
» Develop and use a proper design. 15 points
» Use proper documentation and formatting. 15 points
Description:

For this project, you will put together several techniques and concepts you have learned in CS 1323 (or
from a similar background) and some new techniques to make an application that searches a collection
of data on magazines. This application will allow users to enter the names of magazine publishers and
see the names and number of issues per year of each magazine published by that publisher in the
database.

One of the best things about this project is that it will use an arbitrary amount of data. Your program
must be capable of handling data on over 10,000 magazines. To the surprise of no one, the best approach
to this somewhat large problem is to decompose the problem into separate classes that can be gradually
built up. Note that much of the code you write for this program could be reused in more complex
applications, such as a publication data system that also includes information on authors, editors, and
other sorts of publications besides magazines.

Operational Issues:

Your program will read the magazine data file (a text file) as specified by a file name. The file name will
be given as a program argument. (See below for information on how to read program arguments). Each
line of the file contains a magazine’s name, followed by a comma, followed by a space, followed by the
name of the magazine’s publisher, followed by a comma, followed by a space, followed by the number
of issues per year for this magazine, followed by a comma, followed by a space, followed by the year in
which this magazine was first published. If the magazine is no longer published, there will be one final
comma, space, and data field — the year of last publication. For example:

The Watchtower, Watchtower Bible and Tract Society, 6, 1879

CS 2334 Fall 2013 1

You will need to store each magazine’s data as an object and the collection of all magazines will be
stored as a list of these objects. In addition, you may create and use objects of other types to give your
system a logical design and the functionality required by the program specifications.

Once the list of magazines has been read into your program and stored, your program will use a
JOptionPane to display to the user a dialog box requesting the name of a magazine publisher.

When the user enters a publisher name into the dialog, your program will search through the list of
magazines. If the publisher name is found for any of the magazines on the list, your program will use
another dialog to inform the user of that fact along with that magazine’s data. If the publisher’s name is
associated with multiple magazines on the list, all of the data associated with all of those magazines will
be displayed. If the publisher name is not associated with any magazine in the list, your program will
use a dialog to inform the user of that fact.

After checking whether the publisher name is associated with any magazine(s) in the list of magazines
and informing the user one way or the other, your program will again use a dialog to request a magazine
publisher’s name. It will continue in this loop until the user clicks on cancel, at which time the program
should gracefully exit.

Implementation Issues:

There are two Java elements in this project that may be new to some students: reading from a file and
program arguments. These Java features are summarized below.

Reading from a file:

We will discuss File I/O in more depth later in the class; this project is just designed to give you a brief
introduction to the technique. Reading files is accomplished in Java using a collection of classes in the
java.io package. To use the classes you must import the following package:

import java.io.IOException;

The first action is to open the file. This associates a variable with the name of the file sitting on the disk.
String fileName = '"ListOfMagazines.txt";
FileReader fr = new FileReader(fileName);

(Note that the lines given above will work if your magazine data file is called “ListOfMagazines.txt.”
However, you should not “hardcode” this file name into your source code. Instead, you should get the
name of the file from a program argument when your program is run. You will, therefore, need to
modify the code provided above to use the variable in which you have stored the program argument.)

Next the FileReader is wrapped with a BufferedReader. A BufferedReader is more efficient than a
FileReader for working with groups of characters (as opposed to individual characters). Another
advantage of using a BufferedReader is that there is a command to read an entire line of the file, instead
of a single character at a time. This feature comes in particularly handy for this project.

BufferedReader br = new BufferedReader(fr);

The BufferedReader can now read in Strings.

String nextline;
nextline = br.readLine();

Look at the Java API listing for BufferedReader and find out what readLine()) returns when it reaches

CS 2334 Fall 2013 2

the end of the file (stream). Have your code process each line, putting the data into objects and variables
while also looking for this special return value. When you are finished with the BufferedReader, the file
should be closed. This informs the operating system that you’re finished using the file.

br.close();

Closing the BufferedReader also closes the FileReader.

Any method which performs I/O will have to throw or catch an 10Exception. If it is not caught, then it

must be passed to the the calling method. The syntax is given below:
public void myMethod(int argument) throws IOException {
//method body here
}

Program Arguments:

Sometimes it is handy to be able to give a program some input when it first starts executing. Program
arguments can fulfill this need. Program arguments in Eclipse are equivalent to MS-DOS or Unix
command line arguments. Program arguments are handled in Java using a String array that is
traditionally called args (the name is actually irrelevant). See the “Lab #2” slides (this year provided for
Lab #1) for how to supply program arguments in Eclipse.

The program below will print out the program arguments.

public static void main(String[] args) {
System.out .println(args.length + " program arguments:");
for (int i=0; i< args.length; i++)
System.out .println("args[" + i + "] = " + args[i]);
}
(Note that your program should not print the arguments but, instead, use the appropriate argument as the
filename from which to read the magazine data.)

Milestones:

A milestone is a “significant point in development.” Milestones serve as guides in the development of
your project. Listed below are a set of milestones for this project along with a brief description of each.

Milestone 1. Use program arguments to specify a file name.

The name of the file that stores the list of magazine data will be passed to the program using program
arguments as discussed above. Type in the sample program given in the section on program arguments
and make sure that you understand how the program arguments you provide affect the String[] args
parameter that is passed into the main method of the program. Then, write a main method for your
program that reads in the name of the data file from the program arguments.

Milestone 2. Use simple File 1/O to read a file.

Before you can allow the user to search the list of magazines, you must first be able to read a text file.
Examine the section above on reading from a file. A good start to the program is to be able to read in the
name of a file from the program arguments, read each line from the file, one at a time, and print each
line to the console using System.out.println(). Later, you will want to remove the code that prints
out each line read in from the file, since the project requirements do not specify that the file is to be
written out to the console as it is read.

Milestone 3. Create an abstract data type (ADT) to store data on a single magazine.

You must create a class that holds the data for a single magazine from the data file before you can store
that data. Think about what data is associated with each magazine and how to most efficiently store the

CS 2334 Fall 2013 3

data. Also, think about any methods that may help you to manage and compare the data by abstracting
operations to be performed on individual entries in the list. Such methods may be used by other classes.

Milestone 4. Create an ADT that abstracts the use of a list of data on magazines.

You are to store the object representing each magazine into a list of objects. However, it is not necessary
for the portions of the program that will carry out user actions to directly operate on this list as they
would if you simply used an array of magazine objects. Instead, you should create a class that abstracts
and encapsulates this list and allows for the addition of new magazines and also supports the required
search operations on it.

This class will represent the collection of information associated with the program. Think about the
operations that this class needs to support and how it will use the ADT created for Milestone 3. At this
point, you should be able to read in the input file and create an object for each magazine in the file, and
store that object into the list. Note that the data file used for grading may be larger (or smaller) than the
data file provided for testing.

Milestone 5. Implement a program that allows the user to search the magazine list as described below.
This is where the entire program starts to take on its final form and come together. Here you will create

the input and output dialogs and the menu system. Start by creating the input dialogs and the output
dialogs. Tie together the input dialogs, the ADT from Milestone 4, and the output dialogs to make this
search functional and test its functionality.

Finally, you are ready to create the main loop of the program that will take input and invoke the correct
methods to create appropriate output.

Remember that when the user clicks on “cancel,” the program must gracefully exit. This can be
accomplished by using System.exit(0).

How to Complete this Project:

Preliminary Design:
1 During the lab session and in the week following, you should sverk=with-eturpartnerfsite determine

the classes, variables, and methods needed for this project and their relationship to one another. This
will be your preliminary design for your software.

1.1 Be sure to look for nouns in the project description. More important nouns describing the
items of interest to the “customer” should probably be incorporated into your project as classes and
objects of those classes. Less important nouns should probably be incorporated as variables of the
classes/objects just described.

1.2 Be sure to look for verbs in the project description. Verbs describing behaviors of the desired
objects and the systems as a whole should probably be incorporated into your project as methods.

1.3 Be sure to use UML class diagrams as tools to help you with the design process.

2 Once you have completed your UML design, create Java “stub code” for the classes and methods
specified in your design. Stub code is the translation of UML class diagrams into code. It will contain
code elements for class, variable, and method names; relationships between classes such as inheritance,
composition, and aggregation as appropriate; variable types; and method signatures. Stub code does not,
however, contain method bodies. Because we are using object-oriented design, in which the inner
workings of one class are largely irrelevant to the classes with which it interfaces (that is, we are using
encapsulation), we do not need to complete the implementation of the classes until after the design is
completed.

CS 2334 Fall 2013 4

3 Add comments to your stubbed code as specified in the documentation requirements posted on the
class website. Run your commented stubbed code through Javadoc as described in the “Lab #2” slides.
This will create a set of HTML files in a directory named “docs” under your project directory.

4 Create unit tests using JUnit for all of the non-trivial units (methods) specified in your design. There
should be at least one test per non-trivial unit and units with many possible categories of input and
output should test each category. (For example, if you have a method that takes an argument of type int
and behaves differently based on the value of that int, you might consider testing it with a large positive
int, and small positive int, zero, a small negative int, and a large negative int as these are all likely
to test different aspects of the method.)

5 Atthe end of the first week, you will turn in your preliminary design documents (see Due Dates and
Notes, below), which the TA will grade and return to you with helpful feedback on your preliminary
design. Please note: You are encouraged to work with the instructor and the TAs during their office
hours during the design week to get feedback throughout the design process as needed.

Final Design and Completed Project
6 Using feedback from the instructor and TAs as well as your own (continually improving)
understanding of OO design, revise your preliminary UML design.

7 Make corresponding changes to your stub code, including its comments.
8 Make corresponding changes to your unit tests.

9 Implement the design you have developed by coding each method you have defined. A good
approach to the implementation of your project is to follow the project's milestones in the order they
have been supplied. If you find that your design does not allow for the implementation of all methods,
repeat steps 5 and 6.

10 Test each unit as it is implemented and fix any bugs.
11 Test the overall program and fix any bugs.

12 Create a new set of Javadoc files using Eclipse and inspect them to make sure your final design is
properly documented in your source code.

13 Submit your project (see Due Dates and Notes, below).

Extra Credit Features:

You may extend this project for 5 points of extra credit. You could enable a wider range of searches to be
used, such as searching based on part of the publisher’s name or on the publication years or by using
regulars expression or wild cards. Alternatively, think of ways to decompose the class for magazines
into logical subclasses. You could also revise the user interface. If you revise the user interface, you
must still read the file name from the program arguments and the list of magazines from the text file.

To receive the full five points, your extended feature must be novel and it must involve effort in the
design and integration of the feature into the project and the actual coding of the feature. Also, you must
indicate, on your UML design, the portions of the design that support the extra feature(s); and you must
include a write-up of the feature(s) in your milestones file. The write-up must indicate what the feature
is, how it works, how it is novel, and the write-up must cite any outside resources used.

Due Dates and Notes:

The electronic copy of your preliminary design (UML, stub code, detailed Javadoc documentation, and

CS 2334 Fall 2013 5)

unit tests) is due on Wednesday, September 11th. Submit the project archive following the steps given
in the submission instructions by 10:00pm. Submit your revised UML design on engineering paper or a
hardcopy using UML layout software and a hardcopy of the stubbed source code and the unit tests at the
beginning of lab on Thursday, September 12th.

The electronic copy of the final version of the project is due on Wednesday, September 18th. Submit
the project archive following the steps given in the submission instructions by 10:00pm. Submit your
final UML design on engineering paper or a hardcopy using UML layout software and a hardcopy of the
source code at the beginning of lab on Thursday, September +6h19th.

You are not allowed to use the StringTokenizer class. Instead you must use String.split() and a
regular expression that specifies the delimiters you wish to use to “tokenize” or split each line of the file.

You may write your program from scratch or may start from programs for which the source code is
freely available on the web or through other sources (such as friends or student organizations). If you do
not start from scratch, you must give a complete and accurate accounting of where all of your code came
from and indicate which parts are original or changed, and which you got from which other source.
Failure to give credit where credit is due is academic fraud and will be dealt with accordingly.

ADTs
Do not be confused by the term “abstract data type” (ADT). An ADT is not the same as an abstract
class, even though they both contain the word “abstract” in them.

A data type is simply a description of how bits in a computer are grouped and interpreted. Maybe one
set of 32 bits is interpreted as a character, whereas another set of 32 bits is interpreted as an integer, and
a set of 64 other bits is interpreted as an integer that can hold larger magnitudes, etc. With concrete data
types, implementation details matter, such as the number of bits, whether the bits are ordered from least
to most significant, etc. If you try to mix implementations, you’ll screw things up.

With an abstract data type, you hide the implementation details of the data type from the user, so that
what matters is how one interacts with instances of the type, not how they are implemented internally.
So, if you add two integers whose internal representations differ, you should still get a sensible result.

This means that if you create a class using object-oriented techniques (such as making variables private
and only accessible through methods, etc.), then even a concrete class is an abstract data type.

The reason this description doesn't just tell you to create a class to store a magazine’s data is because
you don't have to use just one class. You could use two classes, or three, or more. You could arrange
them in an inheritance hierarchy (where one is a subclass of another). You could use composition or
aggregation (the types of has-a links we have discussed). All of these classes could be concrete or some
of them could be concrete and some could be abstract. You could also include interfaces, if you saw a
good reason to do so. All of these alternatives would count as creating an ADT. However, you should
also strive for simplicity; don’t make an inheritance hierarchy or a bunch of classes or interfaces just
because you can — try to match your design to the requirements.

If the term 'ADT" is still confusing you, think of the assignment as saying “Create something appropriate
that the computer can use to store a magazine’s data.” That is what it means.

CS 2334 Fall 2013 6

	User Request:
	Milestones:
	Description:
	Operational Issues:
	Implementation Issues:
	Reading from a file:
	Program Arguments:

	Milestones:
	Milestone 1. Use program arguments to specify a file name.
	Milestone 2. Use simple File I/O to read a file.
	Milestone 3. Create an abstract data type (ADT) to store data on a single magazine.
	Milestone 4. Create an ADT that abstracts the use of a list of data on magazines.
	Milestone 5. Implement a program that allows the user to search the magazine list as described below.

	How to Complete this Project:
	Preliminary Design:
	Final Design and Completed Project

	Extra Credit Features:
	Due Dates and Notes:
	ADTs

