
Project 4
Computer Science 2334

Fall 2008

User Request:

“Create a Word Frequency Display System
with Import/Export and Load/Save Features and a Graphical User Interface.”

Milestones:

1. Create a dictionary to store words and information about them, as done in Project 3, and
add to that dictionary information on the frequency of certain features of the word list it
contains. In particular, the dictionary will keep a tally of the number of words it
contains of different scores, lengths, and languages.

5 points

2. Create an MVC model as exemplified by the CircleModel class from your textbook and
as discussed in class. The class for this model will be called “DictionaryModel.” This
model will contain (1) the variables and methods needed to keep track of the dictionary,
and (2) the variables and methods necessary to keep track of the views that will listen for
changes to the dictionary.

10 points

3. Create an MVC view associated with the score frequency information in the model to
display a histogram of scores, as you did in Project 3. The class for this view will be
known as “ScoreView.”

5 points

4. Add functionality to the ScoreView class to dynamically resize the histogram as the user
resizes its enclosing pane.

5 points

5. Create an MVC view associated with the word length frequency information in the
model to display a histogram of word lengths. The class for this view will be known as
“LengthView.” This histogram should also dynamically resize.

5 points

6. Create an MVC view associated with the language frequency information in the model
to display a histogram of languages. The class for this view will be known as
“LanguageView.” This histogram should also dynamically resize.

5 points

7. Implement a simple Graphical User Interface “control panel” using Swing that allows
for selecting among the program's functions (load, save, import, export, display views,
and filter). The GUI will use buttons, check boxes, and text boxes.

15 points

8. Use a JFileChooser dialog to allow the user to choose the file used when loading,
saving, importing, or exporting the dictionary.

5 points

9. Create an MVC controller called “DictionaryController” associated with the model.
When the user clicks a button, the controller will tell the model to load, save, import, or
export itself. When the user marks a check box, the controller will tell a corresponding
view to display itself. When the user enters a filter value into a text boxes, the controller
will tell the model to remove from itself words with scores outside the range specified.

15 points

► Develop and use a proper design. 15 points

► Use proper documentation and formatting. 15 points

CS 2334 Fall 2008 1

Description:

An important skill in software design is extending the work you have done in a previous project. For this
project you will rework Project 3, adding a graphical user interface organized around the MVC
paradigm. The MVC paradigm gives us a way to organize our code involving graphical data displays
and/or user interfaces, particularly GUIs. For this assignment, you will be creating a GUI to view and
manipulate data using MVC. In particular, you will be creating a single model to hold the data, three
views to display various aspects of the data, and one controller to moderate between user gestures and
the model and views. For this program you may reuse some of the classes that you developed for your
previous projects, although you are not required to do so.

For this project, as with your previous projects, you will put together several techniques and concepts
learned in CS 1323 and some new techniques to make a new application. This application will
graphically display information about a large database of words which we will call a “dictionary” even
though it lacks definitions. Note that much of the code you write for this program could be reused in
more complex applications, such as a spell-checker or an actual dictionary (with definitions).

Model:
You will create a model class called “DictionaryModel.” Models in the particular version of the MVC
paradigm shown in the Circle example from your textbook contain data and methods for the application
objects being modeled (in this case these will be words) as well as data and methods to allow the model
to interact with views. Your model class will follow this version of the MVC paradigm.

For the application objects, you will create a dictionary, similar to the one from Project 3. This
dictionary will additionally contain information on the frequency of word scores, lengths, and languages.

To interact with views, the DictionaryModel class will have variables and methods akin to those from the
CircleModel class in your textbook. In particular, when words are read into or filtered from the dictionary
in the model, the view objects should be notified.

Views:
Producing views of information can be very useful to users. Therefore your program will create and
maintain three views of the data: one histogram for word score frequency, one or word length frequency,
and one for language frequency called “ScoreView,” “LengthView,” and “LanguageView,” respectively.
Each view will be given its own window, which should be a JFrame. Most other details of the histogram
views are up to you (whether vertical or horizontal, width of the bars, etc.). To make things easy, you
may assume that the scores will only range from 1 to 100. However, you must allow the user to resize
the window in which each histogram is displayed and ensure that each histogram dynamically resizes
along with its associated window in order to make good use of the size of the window.

Controller:
You will create a controller class called “DictionaryController” to handle the task of asking the model to
update itself in response to user input and selecting views. In particular, the controller will be
responsible for the following:

1. When the user asks to load/import (or save/export) a dictionary, the DictionaryController will tell
the model to read in (write out) a user-specified file.

2. When the user asks to filter the dictionary based on score, the DictionaryController will tell the
model to remove words with scores beyond the user-specified range.

3. When the user asks to see a view, the DictionaryController will tell the corresponding view to
display itself.

CS 2334 Fall 2008 2

GUI:
Your previous project used console-based input to determine the files with which to work and presented
output to the user in the form of text. Console-based input and text-based output are quite appropriate
for some programs. However, graphical interfaces are more appropriate for
other programs. This project will be a program of the latter type. This program
will support importing, exporting, loading, saving, filtering, and displaying
dictionary data. Here you will develop a full-fledged Graphical User Interface
(GUI) for dealing with word data, including using the GUI for selecting files,
filtering the words, and displaying the data in a graphical format.

The basic Graphical User Interface for Project 4 will have four buttons, three
check boxes, and two text boxes. The four buttons will be load, save, import,
and export. The three check boxes will be for turning on (checked) and off
(unchecked) the three views (score, length, and language). The two text boxes
will be for entering the minimum and maximum scores to be used for word
filtering. A rough sketch of this is shown in the figure to the right. (The figure is
intentionally rough so that you will not attempt to copy it exactly.)

This main window will be augmented by additional windows that will pop up to help with file selection
and to display the three views. In particular, a JFileChooser window will pop up to help with file
selection for loading, saving, importing, or exporting; a JFrame will pop up to display each view.

Loading/Saving and Importing/Exporting:
Your software will read and write data files, both text and object data, in the
same way as in Project 3. They will use the same data file formats as in Project
3 although there will be no query file or score output file. The only other
difference will be that these I/O operations will be driven by user selections
through the GUI.

When your program is run initially, it should be clear from looking at the GUI
that only load and import are possible. To make this clear, the save and export
buttons will be displayed differently (e.g., with the letters “grayed out”).
Likewise, until dictionary is loaded or imported, the display view check boxes
and filter text boxes will be similarly displayed in such a way that it should be
clear that there is nothing that can be done with respect to them. See, for
example, the figure at right.

When the load or import button is selected, a JFileChooser window will pop up
to help with file selection. Once a dictionary has been loaded or imported, the
other two buttons (save and export) will become active, as shown at right. These
will provide the user with the two corresponding options. (1) The user may
choose to save the dictionary, using object output. If the user makes this choice,
an appropriate dialog will pop up to allow the user to specify a file name and to
browse directories to determine where to save the file. (2) The user may choose
to export the dictionary using text output. Again, if the user makes this choice,
an appropriate dialog will pop up to handle file name and directory selection.

Additionally, once a dictionary has been loaded or imported, the display view
check boxes will become active starting in the unchecked state and the
minimum and maximum filter text boxes will become active starting with the
minimum and maximum scores from the file as their respective default values.

CS 2334 Fall 2008 3

Displaying Views:
Your program should create all views on startup but make them initially
invisible. Only when the corresponding check box is checked will each view
become visible. For example, when the boxes are checked as in the figure at the
right, the score and language histograms should be visible but the word length
histogram should be invisible.

Each time the dictionary contents are changed, your program will update the
three views. This includes when the first file is loaded or imported (changing
the dictionary from an empty dictionary to one containing words), when a
replacement file is loaded or imported (changing from the dictionary previously
in memory to a new dictionary), and when the words are filtered (removing
words from the dictionary, see below).

Filtering:
As with Project 3, the user will have the option of filtering the words in the dictionary based on score.
To enter filter score values, the user will type data into one of the text boxes and hit return. When the
user enters into the minimum text box a value that is greater than the minimum score of the current
dictionary, the dictionary will remove all words with lower scores than the value just entered. Similarly,
when the user enters into the maximum text box a value that is less than the maximum score of the
current dictionary, the dictionary will remove all words with higher scores than the value just entered.

Note that filtering takes place as soon as more restrictive values are entered into a text box and return is
pressed. This will immediately remove words from the dictionary in memory. This means that all views
should immediately be updated to reflect the changed model. It is not necessary to save or export the
dictionary for the filtering to take place. To get back filtered words, one must read (import or load) a
dictionary from a file.

Implementation Issues:

This is the largest project we’ve had so far so make sure to start early and budget your time well. Once
you have a good design, you can write a part at a time and test it before moving on to the next part.
Don’t expect to be able to finish the project if you put it off until the last minute; on the other hand, if
you use your time well, you should have plenty of it.

Due Dates and Notes:

Your revised design and detailed Javadoc documentation are due on Wednesday, November 6th.
Submit the project archive following the steps given in the submission instructions by 9:00pm. Submit
your revised UML design on engineering paper or a hardcopy using UML layout software, a hardcopy
of the index page of your Javadoc documentation, and a hardcopy of the stubbed source code at the
beginning of lab on Thursday, November 7th.

The final version of the project is due on Wednesday, November 13th. Submit the project archive
following the steps given in the submission instructions by 9:00pm. Submit your final UML design on
engineering paper or a hardcopy using UML layout software, a hardcopy of the index page of your
Javadoc documentation and a hardcopy of the source code at the beginning of lab on Thursday,
November 14th.

You may write your program from scratch or may start from programs for which the source code is
freely available on the web or through other sources (such as friends or student organizations). If you do

CS 2334 Fall 2008 4

not start from scratch, you must give a complete and accurate accounting of where all of your code came
from and indicate which parts are original or changed, and which you got from which other source.
Failure to give credit where credit is due is academic fraud and will be dealt with accordingly.

As noted in the syllabus, you are required to work on this programming assignment in a group of at least
two people. It is your responsibility to find other group members and work with them. The group
should turn in only one (1) hard copy and one (1) electronic copy of the assignment. Both the electronic
and hard copies should contain the names and student ID numbers of all group members. If your group
composition changes during the course of working on this assignment (for example, a group of five
splits into a group of two and a separate group of three), this must be clearly indicated in your write-up,
including the names and student ID numbers of everyone involved and details of when the change
occurred and who accomplished what before and after the change.

Each group member is required to contribute equally to each project, as far as is possible. You must
thoroughly document which group members were involved in each part of the project. For example, if
you have three functions in your program and one function was written by group member one, the
second was written by group member two, and the third was written jointly and equally by group
members three and four, both your write-up and the comments in your code must clearly indicate this
division of labor. Giving improper credit to group members is academic misconduct and grounds for
penalties in accordance with school policies.

CS 2334 Fall 2008 5

	User Request:
	Milestones:
	Description:
	Model:
	Views:
	Controller:
	GUI:
	Loading/Saving and Importing/Exporting:
	Displaying Views:
	Filtering:

	Implementation Issues:
	Due Dates and Notes:

