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Abstract— Learning techniques in robotic grasping appli-
cations have usually been concerned with the way a hand ap-
proaches to an object, or with improving the motor control of
manipulation actions. We present an active learning approach
devised to face the problem of visually-guided grasp selection.
We want to choose the best hand configuration for grasping a
particular object using only visual information. Experimental
data from real grasping actions is used, and the experience
gathering process is driven by an on-line estimation of the
reliability assessment capabilities of the system. The goal is to
improve the selection skills of the grasping system, minimizing
at the same time the cost and duration of the learning process.

I. INTRODUCTION

Manipulation skills for service robotic applications re-
quire the development of techniques able to manage the
natural complexity and uncertainty of such applications. In
order to deal with these circumstances approaches based
on the use of sensorial information and the application of
learning techniques have been proposed by many different
authors. Here, we face the problem of visually-guided grasp
selection. Given an object, many different feasible grips can
be performed on it, and it is thus critical to characterize
the quality of candidate grips in order to execute the most
reliable ones.

Applications of robotic manipulation have not been an
exception in the use of learning techniques. In general,
these approaches have been more concerned with the way
a hand approaches to an object [14, 16] than in the best
hand configuration for grasping a particular object. The
object is usually abstracted by a simple volumetric model.
Other works use learning techniques to discover, or simply
tune, the motor control parameters that produce certain
manipulation actions [2, 4, 7, 15].

More directly related to our work is the the approach
followed by Coelho Jr, et al. [5], uses visual features
to categorize and indicate to a haptic controller the best
starting hand orientation. This controller starts, then, a
tactile exploration of the object with a dexterous robot hand
aimed at finding the best hand configuration in terms of
applied wrench.

In this paper we focus on the use of active learning
techniques that try to use experience of real grasping
actions to tune the behavior and the reliability assessment
capabilities of the grasping system. According to this
learning paradigm, the agent is allowed to interact with its
environment. It can execute actions which have an impact
on the generation of training data. Exploration refers to
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Fig. 1. The UMass Humanoid Torso and the Barrett Hand at the
Laboratory for Percetual Robotics of the University of Massachusetts,
http://www-robotics.cs.umass.edu

the process of selecting actions in active learning. In the
framework of our problem, the actions are the different
candidate grips, at a given moment. Actions are selected
by the agent in an ”intelligent” way in order to minimize
the cost and duration of the learning process.

We represent each grip as a point in a multidimensional
space, and we use a procedure to predict a query point
based on its similarity to its neighbors. This is a case of
instance-based also known as memory-based learning [1],
which is a numeric version of the more symbolic case-
based reasoning [19]. These approaches do not construct an
explicit representation of the target function when training
samples are provided, but simply store them.

The main contribution of this paper is an exploration
algorithm that makes use of a problem representation
previously built to decide the next action, the grasp to
be executed, in order to obtain a better knowledge of the
environment with a lower cost, that is, with a minimum
number of executions (see sec. V). The work presented in
this paper is based on results and techniques developed in
previous papers. Sections II to and IV develop the project
framework of the current paper. Finally, in section VI we
describe the validation of this algorithm by using real
experimental data.

II. PROJECT BACKGROUND

The robotic grasping system we have been using
throughout our project is the UMass Torso, developed at
the Laboratory for Perceptual Robotics in the University of



Fig. 2. Three samples grasps.

Massachusetts [18]. This humanoid robot consists of two
Whole Arm Manipulators from Barrett Technologies, two
Barrett hands with tactile sensors and a BiSight stereo head
(see figure 1).

The main modules/steps of the functioning of this
robotic grasping system are the following:

1 Image processing: The stereo vision system of the
robot estimates the two-dimensional location of un
unknown planar object placed on the table, which
is the grasping target. A monocular image of the
object for surface curvature analysis is provided and
analyzed to extract the object contour and identify
triplets of grasping regions on it;

2 Grasp synthesis: Many feasible candidate grasps are
generated, by selecting the grasping points for each
region triplet and the finger configurations that can
be applied to the object in order to perform a grip;
we use the kinematic and geometric constraints of
the three-finger Barrett Hand. A grasp is defined by
a set of three contact points on the object contour,
and the corresponding force directions, applied along
the directions in which the fingers close. Fig. 2 shows
some examples of grasps. A particular kind of grasp
is the virtual two-finger grasp, in which the two
fingers opposing the thumb are positioned on the
same grasping region and act in the same direction,
facing the thumb;

3 Grasp selection: The candidate grasps are charac-
terized in order to perform an ‘intelligent’ selection
of the grasp to execute;

4 Execution: The hand is preshaped and positioned
above the object. It moves down, closes the fingers
so that the object is grasped, lifted and transported
to a designated location. All this is performed with
support of visual and tactile feedback.

The work presented in this paper is mainly focused on
the third step. Details about the other sections of a system
of this kind, concerned with the generation of candidate
grasping configurations, are given in [12, 13].

III. GRASP CHARACTERIZATION SCHEME AND
RELIABILITY MEASUREMENT

A. Grasp characterization

A characterization scheme which provides a way to
describe grasps has been developed, so that a learning
stage can be applied to the process. The scheme includes
nine high-level features, all used for each of the candidate

grasps, so that every grasp is represented by nine measure-
ments becoming a point in a 9-dimensional space.

The features have been designed in order to meet the
following requirements:

• Vision-based computation. The features are com-
puted from visually-extracted information.

• Hand constraining. Features take into account par-
ticular characteristics of the hand.

• Location and orientation invariance. Displacements
and rotations of the object do not affect the values of
the features.

• Object independence. Grasps with the same physical
properties have the same characterization indepen-
dently of the object for which they are computed.

• Physical meaning. Features are computed to measure
physical properties relevant to grasping.

• Stability and reliability. Features consider stability
and reliability hazards of a grasp.

The nine features derive from a set of grasp quality
criteria, defined in [3]. Such criteria were normalized and a
stability analysis was performed on them. They have been
further improved in [11].

B. Experimental measurement of grasp reliability

A key issue in our experimental approach is the def-
inition of a practical measurement of the reliability of a
grasp. In order to do this a single object is placed on a
table within the robot workspace. Using visual information
the robot locates the object and computes a set of feasible
grasp configurations. One of the configurations is selected,
either manually by a human operator, or automatically by
the robot, and executed.

If the robot has been able to lift the object safely, a set
of stability tests are applied in sequence. These are aimed
at measuring the stability of the current grasp. They consist
of three consecutive shaking movements of the hand which
are executed with an increasing acceleration. After each
movement the tactile sensors are used to check whether
the object has been dropped off.

This protocol provides us with a qualitative measure of
the success of a grasp. Thus, an experiment may result in
five different reliability classes: E indicates that the system
was not able of lifting the object at all; D, C, B indicate
that the object was dropped, respectively, during the first,
second, or third series of shaking movements; finally A
means the object did not fall and was returned successfully
to its initial position on the table. Hence, we define Ω =
{A,B,C,D,E} as the set of reliability classes.

IV. PREDICTION SCHEME

The learning methodology that we propose is composed
of two main parts, an off-line and an on-line learning
components.

First, an off-line prediction scheme computes the most
likely reliability class of an untested grip, using previous
experience as reference. This component assumes the exis-
tence of a set of previously executed grasps, i.e. experience,
which descriptors values and reliability classes are known.



Second, the on-line component, which will be referred to
as exploration function, is responsible for building such a
set of previous attempts by successive selection of the most
appropriate grip candidates. This paper is mainly focused
on this second component. First we outline the off-line
learning component [3, 11].

Information about N executed triplets constitutes the
previous experience dataset. Each grip gi, i = 1 . . . N is
described by the nine visual features q1, . . . q9 introduced in
subsection III-A. The 9-dimensional space GS is formed by
the ranges of the features. Moreover, we have also recorded
the experimental grip performance and have assigned it to
a class ωi ∈ Ω for each gi.

A. Weighted KNN classification rule

A prediction function has the form F (g) = ω̄ where
g ∈ GS and ω̄ ∈ Ω. Posed in these terms, the prediction
problem is essentially a classification problem. There exists
a wide bibliography on the building of such functions based
on the Bayesian decision theory [6]. In our previous works
we developed different classification approaches, among
which one based on the voting k-nearest neighbor (KNN)
rule [6, 9] showed the most convenient properties [11].

This approach is classified among the non-parametric
techniques, and it does not assume any density distribution
of the descriptors and the classes. To predict the class
of a query point gq , the KNN rule counts the K-nearest
neighbors and chooses the class that most often appears in
them.

In our implementation we have introduced some mod-
ifications to the basic schema. First we use the euclidean
metric for measuring the distance between the points in
the GS . We weighted the contribution of each of the KNN
points according to its distance to the query point. This
gives more importance to the closer points. The kernel
function used is K(d) = 1

1+(d/T ) , where T is an adjustable
parameter, and d is the distance.

We define KNN(gq) = {(gi, ωi), i = 1 . . . k, gi ∈
GS , ωiinΩ} as the k closest points to gq and di their corre-
sponding distances from gq . The probability corresponding
to a class ω̄ are computed using this expression:

p(ω̄, gq) =
∑

gi∈KNN(gq)
ωi=ω̄

K(di)
∑

gj∈KNN(gq) K(dj)
(1)

Function P is also an expression of the posterior proba-
bility [9]. Our predictor would be defined as

F (gq) = argmaxω∈Ω{p(ω, gq)} (2)

That is, the predicted class ω is the one with the largest
probability p(ω, gq).

Error and risk functions

The classification performance is measured in terms of
successful or wrong classifications. Our classes have an
important particularity, their qualitative order (i.e.: class A
means a higher stability for a grip than any other class).

Having this in mind, we penalize in a different way failures
which are qualitatively small (i.e.: predicting B when the
outcome is C) compared to larger ones (i.e.: predicting A
when the outcome is D). This penalization is realized with
the error function E(ω̄, ω), being ω̄, ω ∈ Ω, where ω̄ is
the predicted outcome and ω the real one. Such function
is easily implemented with a table, and there exist many
criteria to define it [10].

The error function is composed with the posterior prob-
ability to obtain the risk function:

R(ω̄, gq) =
∑

ω∈Ω

p(ω̄)E(ω̄, ω) ,where ω̄ ∈ Ω (3)

The class ω ∈ Ω selected for the prediction is the one
that minimizes the risk:

FR(gq) = argminω∈ΩR(ω, gq) (4)

Equations 2 and 4 show two different functions for the
class prediction of a given query grip. The first one is based
on the underlying assumption that any wrong classification
has the same cost, whilst the second assigns a different
cost depending on the type of misclassification, making it
possible to introduce in the prediction step the qualitative
ordering of the classes.

Finally, it is worthy to note that in [11] we compared
the KNN prediction approach to other well-known classi-
fication techniques, like those based on Artificial Neural
Networks (ANN). In that paper we showed that the KNN
approach presented better predictive performance that the
other methods.

V. ON-LINE EXPLORATION

The goal of the on-line exploration procedure is to
select the next grasp to execute among a set of candidates.
This selection is done in order to improve the predictive
capabilities of the stored experience, i.e., the set of already
executed grasps.

The algorithm we propose assumes that at any point
during the training of the grasping system a set of candidate
grips gi ∈ GS is proposed and the algorithm has to select
the next grasp to be executed. To accomplish this task, it
can take into account the results of previous experiments.

The approach we propose for the selection is inspired
in the idea hinted by Thrun [17], “queries are favored
that have the least predictable outcome”. That is, those
candidates which category is less predictable are preferred.
This idea is based on the insight that such candidates are
located in areas where the implicit model represented by
the experience dataset is less clear, so that their execution
should provide critical information for the classification
task.

We implement this idea by defining the term prediction
confidence. For every grip candidate gi, a class ωi ∈ Ω
is computed using the prediction schemes defined in the
previous section.

The formal meaning of confidence varies depending on
the expression used for the prediction, more precisely,
whether considerations about the error cost are included



in the computation of the probability of each class. We
distinguish two cases in the formal definition of confidence.
In the first, equation 2 is used for computing the prediction
of a class. In this case the confidence of a prediction is
expressed by p(ωi, gi). In the second case, that considers
the different cost errors, prediction confidence is derived
from equation 4, and its value is R(ωi, gi). Summarizing,
the confidence of a prediction is defined by this expression,

Gconf (gq) =

{

max{p(ω|gq), ω ∈ Ω} from eq. 2

min{R(ω, gq), ω ∈ Ω} from eq. 4
(5)

Once defined the notion of confidence, it is easy to
describe the exploration function, though it also depends
on whether the prediction scheme is based on conditional
probability or conditional risk. In the former case, the
candidate with minimum confidence value is chosen, in the
latter, the candidate with maximum risk value is preferred.

Given a set of m grasp candidates Gq = {g1, . . . , gm} ⊂
GS , the exploration function is defined as,

X(Gq) =

{

argmingi∈Gq
Gconf (gi) minimum confidence

argmaxgi∈Gq
Gconf (gi) maximum risk

(6)

VI. VALIDATION AND RESULTS

A. Experimental sample dataset

The methodologies described above need to be validated
using real data from real experiments. In order to acquire
a sample database large enough to validate the proposed
methods, a series of exhaustive experiments have been
carried out.

Four real objects have been built for the experiment,
two with simple shapes and two with more complex ones.
In order to build the sample database the four objects are
presented to the grasping system, and a sufficiently large
number of grips are executed. The reliability of these grips
is obtained applying the test described in section III-B.

A particular execution of a grip configuration can be
influenced by many unpredictable factors. To avoid this
problem, each grip is executed a sufficiently large number
of times, changing the initial location and orientation of the
object. In this way, statistically significant conclusions can
be obtained. A collateral consequence is that the samples
obtained are naturally grouped depending on repeated
grips.

The number of feasible grips that are computed for
each single object is usually large, varying from several
dozens to more than one hundred. This could lead to a non
practical number of executions, so for each object only a
few configuration grips are selected to be executed. This
selection consists of the most representative configurations
of each object. Each configuration grip is executed 12
times, 4 times for three different orientations of the object.

Finally, in order to study the grasping performances
in different circumstances, several characteristics of the
environment are tested. These are the weight of the objects

TABLE I

SAMPLE DATASETS

E D C B A Total
Light 102 84 33 27 18 264
Low 38.6% 31.8% 12.5% 10.2% 6.8% (22)
Light 51 97 56 38 118 360
High 14.2% 26.9% 15.6% 10.6% 32.8% (34)
Heavy 95 92 29 2 2 220
High 43.1% 41.8% 13.2% 0.9% 0.9% (23)
Heavy 50 26 0 0 0 76
Light 65.8% 34.2% 0.0% 0.0% 0.0% (11)

Sample distributions among classes for the different data sets. The figures
in brackets in the “Total” column indicates the number of different grip
configurations tested.

and the friction coefficient. Two qualitative categories for
each of the two conditions are distinguished: heavy and
light objects, and low and high friction. The different
weights are obtained with two different sets of objects,
that have the same appearance, but are made of different
materials (wood in the heavy case and polystyrene in the
light). The different frictions are obtained by placing and
removing latex fingertips on the metal-made fingers.

More than nine hundred samples divided in four different
datasets were obtained from this exhaustive experimenta-
tion. Table I shows the number of different grasps executed
and the percentages of grips that resulted in each class of
Ω.

B. Validation of the exploration procedure

The performance index of the exploration procedure
is the predictive capability of the set of samples se-
lected/executed. This can be estimated predicting the
classes of the samples contained in a validation test, and
comparing them with the real reliability classes obtained
from the practical experiments.

The most straight and realistic way of measuring and
studying the performance of the exploration would have
been to design a set of running experiments on the real
robot. However, the potentially large number of executions
that this would require in order to tune and obtain statisti-
cally significant results, represents a main drawback.

For this reason, we have designed a validation frame-
work that uses the available data so as the robot were
performing its training process according to the active
learning procedure. In this situation the robot is meant
to execute the following sequence of selection-execution
actions:

1) One or more objects appear in the workspace of the
robot. The possible candidate grasps for all of them
are computed.

2) The robot selects one of the generated grasps by
using the exploration function.

3) The chosen grasp is executed and the reliability test
is applied.

4) The new grasp with its experimental reliability class
is added to the experience dataset.



The core of the validation framework is composed by the
algorithm 1. This algorithm tries to emulate the running
of a training session, which is a sequence of selection-
executions, that starts with experience at all.

Algorithm 1 SINGLE-RUN EXECUTION

REQUIRE: S = {gq , ωq}, gq ∈ GS , ωq ∈ Ω % Sample dataset
% pool: Points that have not been selected yet
% memory: Points that have been already
explored

SV ← select subset(S) % Extracts a subset from S
Spool ← S − SV

Smem ← ∅
WHILE Spool 6= ∅ DO
% Selects a subset of candidates from Spool

GQ ← subset candidates(Spool)
% Selects a candidate from the set of
candidates
gx ← select candidate (GQ)
% Updates the memory
Smem ← Smem ∪ {gx}
Spool ← Spool − {gx}

% Computes the prediction errors
YV ← predict (SV using Smem)
ē← compute error (YV , SV )

END WHILE

The output of this algorithm is the evolution of the
error measure. Several datasets appear in this algorithm:
SV is the validation set; Spool is the pool dataset, which
contains the points that have not been explored yet; Smem,
is the memory dataset, which contains the points already
explored.

The operation select candidate implements the
exploration procedure explained in the previous section.
select subset selects a subset from a larger dataset;
in this case it is used to extract the validation set from the
initial whole sample dataset. This can be done randomly,
or in terms of grasps and objects. In the latter cases, all
grasps labeled with a given object or grasp are selected
for the validation test. Similarly, subset candidates
chooses randomly a set of candidates from a larger set. It
is possible to select in all iterations the same number of
candidates, or allow this number to change. Since there is
no clear argument against or in favor for any of the options
we implement the simplest, that is selecting a fixed number
of candidates. An interesting option to this is to select all
the points, GQ = Spool.

The operation predict represents a prediction that
computes a class for a set of candidates using a set
of previous executed grasps. In the case of this paper
we implement the weighted k-nearest-neighbor rule as it
is explained in section IV-A. The value of K has been
experimentally set to 31, and T for the kernel function
is set to 1.5.

The error metric represented by the operation
compute error is based on the concept of
misclassification error distance. The distance between
two consecutive classes is defined as 1, that between A
and C as 2, etc. In this way define the error distance
e(gq) = {0, . . . , 4} for the prediction of a given query
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Fig. 3. Graph with the evolution of the prediction error when the
Light/High sample dataset is used for training.

grip. Given a set of predictions G = {gi, i = 1 . . . n}, we
compute the average error metric:

ē(G) =
∑

e(gi)/4 (7)

As the presented algorithm is designed for a single
run, the execution has to be repeated more than once in
order to obtain statistically significant results. We have
carried out a variation of an m-fold cross validation. The
whole sample dataset is divided in m partitions and in
each run one of them is assigned to SV . Due to the
stochastic nature of some of the operations, especially
subset candidates, it is also convenient to execute
the whole cross-validation a sufficiently large number of
times. The final result is the average of the error evolution
ē of the single runs.

Finally, in order to have a reference for comparison, we
also implement a naive random exploration function, which
chooses the next grasp to be executed randomly.

C. Results

Figures 3 presents (for a particular different datasets)
the evolution of the prediction error for different sizes of
the experience dataset. At each iteration of the algorithm
described above 20 new samples are selected as query
candidates. The error metric used is ē. The graphs in
solid black line show the evolution of the error when the
minimum confidence exploration procedure is used. The
graphs in dashed lines show the evolution of the prediction
error when the sample to execute is selected randomly
among the set of candidates. This case represents the error
evolution when no specific exploration rule is applied.
The vertical dashed line indicates the point where the
accumulated experience is larger than 31, which is the K
used by the KNN prediction procedure.

We present the results obtained for the “Light/High”as
representative of the other datasets, except for the
“Heavy/Light” case, that was discarded right from the



beginning because of the great disequilibrium it shows in
the distribution of the reliability classes. The graph in figure
3 shows a very good performance, as the prediction error
is able to fall to a stationary level in less than a hundred
steps when using the proposed exploration strategy, clearly
improving the random exploration.

Finally, is worthy to comment a work that is directly
related to our problem. Kamon et al. [8] follow an approach
similar to ours for estimating the quality of a two-finger
grasp using stored experience. They keep a memory of
successful grasps and a knowledge base of vision-based
low-level quality features, that they use to estimate the
quality of a set of candidates. They also define a test
for the stability of a grasp based on the observation of
the object gripped by the hand. The main difference with
our work is that they keep an explicit separation between
the description of a grasp and its quality features, thus
keeping a different memory for each kind of data. On
the contrary, our approach keeps a unified memory that
characterizes uniquely a grasp and keeps information about
its quality. Moreover, our work is focused on three-finger
grasp. Finally, our results are supported by an exhaustive
an larger amount of experimental data.

VII. CONCLUSION

In this paper we have presented an active learning
approach to the problem of assessing robot grasp reliability.
This algorithm tries to use the information that has been
accumulated through successive grasping attempts. More
precisely, the algorithm leads the succession of trials in
order to increase the knowledge contained in the previous
experience.

Data from real experiments and a validation methodol-
ogy has been applied in order to test the appropriateness
of the algorithm proposed. The results show both the
usefulness of the exploration procedure. The approach
leads in the right direction but important aspects remain
yet to be improved.

Finally, this work is a completion of a larger project
having as goal the development of a practical grasping
system. This system, implemented on a humanoid robot,
uses sensorial information and learning techniques to over-
come the uncertainty that appear in manipulation tasks on
complex working environments.
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