Decision Trees
Most Decision Trees

Each question node:

• Asks a question about a single feature
 • Categorical variables
 • Continuous variables (with a defined threshold)

• Sorts the samples into two sets, corresponding to the **Yes** and **No** branches
 • Other perspective: cuts a part of the feature space into two pieces

Leaf nodes: assign an output (class label, probability or continuous value)
Decision Tree Construction

• Classifier: measure performance in terms of the quality of distinctions that are made (Gini Impurity / Entropy)
• Learning process: incremental / greedy
 • Add a new question that improves the performance the most
 • Which feature and (if continuous) which threshold?
Decision Tree Construction

Overfitting is a challenge here, too. Combat with regularization:

• Maximum tree depth / maximum number of leaf nodes
• Minimum number of samples in a node to be split
• Statistical tests:
 • E.g., Likelihood ratio test: does the improvement in performance (as measured by data likelihood) justify the additional parameters required to encode the new expansion?
Sir Francis Galton (1822-1911)

• Meteorology: first weather maps
• Statistics: regression
• Psychology
• Heredity
• …
Weighing a Cow
Weighing a Cow

• Individually, non-experts are generally not good at guessing the weight of a cow
• However, the distribution is \~Normal, with a mean very close to the true weight

Message: Measures from a large set of independent, poor-quality predictors can give us a high-quality prediction
Mixing Many Noisy “Experts”

Ensemble-based methods:
• Create many models
• Combine the predictions of these models
 • Classifiers: voting (soft or hard)
 • Regression: some mechanism for blending the predictions (e.g., computing a mean)

• This really only works if the models provide independent assessments for the query samples
Forcing Independence

• Train each tree with a subsample of the training set:
 • Bagging: sample with replacement
 • Pasting: sample without replacement

• Sampling features:
 • Random subspaces: only use a subset of the available features for a given tree
Forcing Independence

Adding noise to tree construction. For each possible split:

- Random forest: consider only a small subset of the available features
 - Useful when there are many features possible or many possible questions
- Extra trees: consider only a subset of possible thresholds (or question parameters)
Feature Importance

Which of the features is actually important to making prediction about the data? Common approaches:

• Reduction of impurity for questions involving a specific feature
• How often does a feature occur in a tree?
• Where does a feature occur in a tree?
• Importance sampling: how does the model perform when an individual feature is corrupted
Feature Importance

Getting this right can:
• Help domain scientists focus their models
• More efficiently construct models in the future
• Refine our data collection / storage processes
Forests

So far: training of one tree is independent of another

• Natural parallelization
• Independence to varying degrees
Boosting

Alternative approach:
• Grow trees in sequence
• The current tree attempts to repair prediction errors of the prior trees
 • Each new tree is solving a new piece of the problem

The cost: lose parallelization