Embedded Systems (CS [45]163)
Homework 4

April 28, 2010

This homework assignment is due on Tuesday, May 4th. Your work may be handed in electronically (use the Homework 4 digital dropbox on D2L) or in hardcopy form.

This assignment must be done individually: do not share/discuss your answers with others or look at the answers of others.

Question 1

Consider the following circuit:
1. (5pts) What is always true no matter the state of the transistor? (i.e., what are the fundamental equations?)

2. (15pts) Assume that $V_1 = 5V$, $V_f = 0.7V$, $R_1 = 2K\Omega$, $g = 10000$ and $R_2 = 10\Omega$. Show $I_{CE}$, $V$ and $V_3$ as a function of $-2 \leq V_2 \leq 20$. 
3. (10pts) Assume the same resistances as above and that $V_2 = 20V$. What would $V_1$ have to be such that $V_3 = 15V$?
Question 2

Consider the following circuit:

Assume that the switch closes at $t = 0$ and that $V1(0) = V2(0) = 0V$. Define $V = V1 - V2$

1. (10pts) What are the fundamental equations that determine the behavior of this circuit?
2. (10pts) Derive an equation for $I_C$ in terms of $V$, $R_1$, and $R_2$.

3. (20pts) Derive an equation for $V(t)$. Hint: $V_1$ and $V_2$ should drop out of the equations.
4. (10pts) Derive equations for $V_1(t)$ and $V_2(t)$. 
Question 3

Consider the following circuit:

1. (10 pts) What are the fundamental equations that determine $V$ and other associated unknown variables (for the left-hand-side of the circuit).
2. (10 pts) Derive an equation for $V$. 
3. (10 pts) Assume that $R_a = 100\Omega$ and $R_b = 300\Omega$. Show an equation for $V_{out}$ in terms of $V$.

4. (10 pts) Show $V_{out}$ as a function of the binary number $C$. (show a graph)

**Question 4 (ALL)**

How much time did you spend on this homework assignment?