
Lab Exercise 6
CS 2334

September 28, 2017

Introduction

In this lab, you will experiment with using inheritance in Java through the use of
abstract classes and interfaces. You will implement a set of classes that represent
various 3D shapes. In addition, your implementation will facilitate the comparison
of shape objects, even when they are of different shape classes.

Learning Objectives

By the end of this laboratory exercise, you should be able to:

1. Create and extend abstract classes and methods

2. Use interfaces to define standard behavior across multiple classes

3. Appropriately select an abstract class or interface based on the requirements
of the solution

Proper Academic Conduct

This lab is to be done individually. Do not look at or discuss solutions with anyone
other than the instructor or the TAs. Do not copy or look at specific solutions from
the net.

1

Preparation

Download the lab6 implementation:
http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab6/lab6.zip

Representing Different Shapes

Below is the UML representation of a set of classes that represent various 3D shapes.
Your task will be to implement this set of classes and an associated set of JUnit test
procedures.

Driver

+main(args:String[]):void

ShapeComparator

+compare(s1:Shape, s2:Shape):int
+equals(s1:Shape, s2:Shape):boolean

Comparator
«interface»

Sphere

-radius:double

+Sphere(radius:double)
+getSurfaceArea():double
+getVolume():double
+getShapeType():String
+getRadius():double
+toString():String

Cylinder

-height:double
-radius:double

+Cylinder(height:double, radius:double)
+getVolume():double
+getSurfaceArea():double
+getShapeType():String
+getHeight():double
+getRadius():double
+toString():String

Cube

+Cube(edge:double)
+getShapeType():String

Comparable
«Interface»

Cuboid

-length:double
-breadth:double
-height:double

+Cuboid(length:double,breadth:double,
 height:double)
+getSurfaceArea():double
+getVolume():double
+getShapeType():String
+getLength():double
+getBreadth():double
+getHeight():double
+toString():String

Shape

-numShapes
-id: int

+Shape()
+getNumShapes():int
+getId(): int
+compareTo(Shape s):int
+toString():String
+getVolume():double
+getSurfaceArea():double
+getShapeType():String

The classes in italics represent abstract classes or interfaces. Note that Compa-
rable and Comparator are defined in the Java library. The concrete child classes

2

http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab6/lab6.zip

must implement all methods from the abstract parent classes. In this lab, Shape is
an abstract class.

The line from Shape to Comparable indicates that Shape must implement
the Comparable interface. The Shape class compares shape objects based on
their surface areas and then their volumes. In contrast, the ShapeComparator
class must implement the Comparator interface. ShapeComparator compares
shape objects based on their volume only. You must provide both the compare() and
equals() methods.

All instances of a Shape are given a unique int id. These are to be assigned by
the Shape constructor. The first instance of a shape that is created is assigned an
id of 0 (zero); the next is assigned 1. numShapes is a static variable that will be
incremented each time a new 3D Shape object is created and keeps track of the total
number of 3D Shape objects that have been created.

In the Cube class, the lengths of the three sides i.e length, breadth and height are
equal to edge length.

Lab 6: Specific Instructions

Start from the class files that are provided in lab6.zip.

1. Import lab6.zip into your Eclipse workspace.

2. Implement the attributes and methods for each class

� Complete the implementation of the Shape and Cube classes. Implement
the Sphere, Cuboid, and ShapeComparator classes. Complete implemen-
tations of the Cylinder and Driver classes have been provided.

� Use the same spelling and visibility for instance variables and method
names, as shown in the UML.

� Do not add functionality to the classes beyond what has been specified.

� Don’t forget to document as you go!

3. Create JUnit test for all the methods implemented in the above classes.

� You need to convince yourself that everything is working properly.

� Make sure that you cover all the classes and methods while creating your
tests. Keep in mind that we have our own tests that we will use for
grading.

3

Notes

1. Examine Cylinder.toString(). For a Cylinder item with ID = 1, shapeType =
“Cylinder”, SurfaceArea = 31.42, Volume = 12.57, height = 4.00 and radius
= 1.00, toString() returns a String in the following format:

C y l i n d e r : ID = 1 S u r f a c e A r e a = 31.42 V o l u m e = 12.57 h e i g h t = 4.00 r a d i u s = 1.00

Note that each of Surface Area, Volume, height and radius are represented
using exactly two digits following the decimal point. The whitespace preceding
each variable name is implemented with a single tab character (“\t”). There is
also one space on either side each equal sign.

2. Sphere.toString(): for a Sphere object with ID = 0, shapeType = “Sphere”,
SurfaceArea = 201.06, Volume = 268.08 and radius = 4.00, toString() must
return a String in the following format:

S p h e r e : ID = 0 S u r f a c e A r e a = 201.06 V o l u m e = 268.08 r a d i u s = 4.00

The format follows the same pattern as the Cylinder class.

3. Cuboid.toString(): for a Cuboid object with ID = 2, shapeType = “Cuboid”,
a SurfaceArea = 94.00, Volume = 60.00, length = 3.00, breadth = 4.00 and
height = 5.00, toString() must return a String in the following format:

C u b o i d : ID = 2 S u r f a c e A r e a = 94.00 V o l u m e = 60.00 l e n g t h = 3.00 b r e a d t h = 4.00 ←↩
h e i g h t = 5.00

Note that the left arrow is not part of the String (it only indicates that the full
String does not fit on the width of this page).

4. The Shape class, through Comparable interface, compares the shape objects
based on their surface areas (in ascending order); if their surface areas are
identical, the comparison is based on their volume (again, in ascending order).
An example list of objects after sorting is as follows:

C u b o i d : ID = 2 S u r f a c e A r e a = 6.00 V o l u m e = 1.00 l e n g t h = 1.00 b r e a d t h = 1.00 ←↩
h e i g h t = 1.00

C y l i n d e r : ID = 1 S u r f a c e A r e a = 12.57 V o l u m e = 3.14 h e i g h t = 1.00 r a d i u s = ←↩
1 .00

S p h e r e : ID = 0 S u r f a c e A r e a = 12.57 V o l u m e = 4.19 r a d i u s = 1.00
C u b e : ID = 3 S u r f a c e A r e a = 54.00 V o l u m e = 27.00 l e n g t h = 3.00 b r e a d t h = 3.00 ←↩

h e i g h t = 3.00
C u b e : ID = 4 S u r f a c e A r e a = 96.00 V o l u m e = 64.00 l e n g t h = 4.00 b r e a d t h = 4.00 ←↩

h e i g h t = 4.00

4

5. The ShapeComparator class, through the Comparator interface, compares the
shape objects based on their Volume (in descending order). An example list of
Shapes after sorting with the ShapeComparator is as follows:

C u b e : ID = 4 S u r f a c e A r e a = 96.00 V o l u m e = 64.00 l e n g t h = 4.00 b r e a d t h = 4.00 ←↩
h e i g h t = 4.00

C u b e : ID = 3 S u r f a c e A r e a = 54.00 V o l u m e = 27.00 l e n g t h = 3.00 b r e a d t h = 3.00 ←↩
h e i g h t = 3.00

S p h e r e : ID = 0 S u r f a c e A r e a = 12.57 V o l u m e = 4.19 r a d i u s = 1.00
C y l i n d e r : ID = 1 S u r f a c e A r e a = 12.57 V o l u m e = 3.14 h e i g h t = 1.00 r a d i u s = 1.00
C u b o i d : ID = 2 S u r f a c e A r e a = 6.00 V o l u m e = 1.00 l e n g t h = 1.00 b r e a d t h = 1.00 ←↩

h e i g h t = 1.00

6. The formulas for the 3D Shape Classes are as follows:

Class Surface Area Volume Shape Type
Sphere 4πr2 4

3
πr3 “Sphere”

Cuboid 2 (l × b+ b× h+ h× l) l × b× h “Cuboid”
Cylinder 2πr (r + h) hπr2 “Cylinder”

Cube 6l2 l3 “Cube”

Final Steps

1. Generate Javadoc using Eclipse.

� Select Project/Generate Javadoc...

� Make sure that your lab6 project is selected, as are all of your java files

� Select your doc directory

� Select Private visibility

� Use the default destination folder

� Click Finish

2. Open the lab6/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to make
sure that that all of your classes are listed and that all of your documented
methods have the necessary documentation.

3. If you complete the above instructions during lab, you may have your imple-
mentation checked by one of the TAs.

5

Submission Instructions

Before submission, finish testing your program by executing your unit tests. If your
program passes all tests and your classes are covered completely by your test classes,
then you are ready to attempt a submission. Here are the details:

� All required components (source code and compiled documentation) are due at
7pm on Saturday, September 30. Submission must be done through the
Web-Cat server.

� Use the same submission process as you used in lab 1. You must submit your
implementation to the Lab 6: Abstract Classes and Interfaces area on the Web-
Cat server.

Reading

� API for the Collections Framework

� Comparable interface.

� Comparator interface.

6

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Correctness/Testing: 45 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against a set of tests (called Unit Tests). These unit tests will
not be visible to you, but the Web-Cat server will inform you as to which tests
your code passed/failed. This grade component is a product of the fraction of
our tests that your code passes and the fraction of your code that is covered
by your tests. In other words, your submission must perform well on both
metrics in order to receive a reasonable grade.

Style/Coding: 20 points

The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described in Lab 1 will result in
a subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points

This element will be assessed by a grader (typically sometime after the lab
deadline). Any errors in your program will be noted in the code stored on
the Web-Cat server, and two points will be deducted for each. Possible errors
include:

� Non-descriptive or inappropriate project- or method-level documentation
(up to 10 points)

� Missing or inappropriate inline documentation (2 points per violation; up
to 10 points)

� Inappropriate choice of variable or method names (2 points per violation;
up to 10 points)

� Inefficient implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

� Incorrect implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

7

If you do not submit compiled Javadoc for your project, 5 points will be de-
ducted from this part of your score.

Note that the grader may also give warnings or other feedback. Although
no points will be deducted, the issues should be addressed in future submis-
sions(where points may be deducted).

Bonus: up to 5 points

You will earn one bonus point for every two hours that your assignment is
submitted early.

Penalties: up to 100 points

You will lose ten points for every minute that your assignment is submitted
late. For a submission to be considered on time, it must arrive at the server by
the designated minute (and zero seconds). For a deadline of 9:00, a submission
that arrives at 9:00:01 is considered late (in this context, it is one minute late).

After 15 submissions to Web-Cat, you will be penalized one point for every
additional submission.

For labs, the server will continue to accept submissions for three days after the
deadline. In these cases, you will still have the benefit of the automatic feedback.
However, beyond ten minutes late, you will receive a score of zero.

The grader will make their best effort to select the submission that yields the
highest score.

8

