
Lab Exercise 4: Inheritance and Polymorphism
CS 2334

September 14, 2017

Introduction

With this lab, we consider relationships between objects. Think about the records
that we keep for every item used to compute your grade in this course. Each of
these Assignments has a name, a date, a score, a total point count and a weight.
We will use class inheritance in this lab to capture the fact that different types of
Assignments have some properties in common, but differ in other properties. For
example, a Lab might have a specification document, and a Project might have both
a specification and a data file. In addition, we will use class aggregation to represent
a list of Assignments.

Learning Objectives

By the end of this laboratory exercise, you should be able to:

1. Read and understand UML diagrams involving class inheritance

2. Implement classes from a given specification

3. Create inheritance relationships

4. Understand the difference between is-a and has-a relationships

5. Develop testing procedures for your own code

1

Proper Academic Conduct

This lab is to be done individually. Do not look at or discuss solutions with anyone
other than the instructor or the TAs. Do not copy or look at specific solutions from
the net.

Preparation

1. Download:
http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab4/lab4.zip

2. Import into your Eclipse Workspace:

(a) File menu: Import

(b) Select General/Existing Projects into Workspace and then click Next

(c) Select archive file: browse to the lab4.zip file

(d) Click Finish

3. Once you create the new project, it may not initially know where to find the
standard Java libraries (it varies depending on your configuration).

(a) Project menu: Select properties

(b) Select Java Build Path / Libraries

(c) If the JRE System Library is not listed, then select Add library: JRE
System Library and click Next. Select Workspace default. Click OK

(d) If the JUnit Library is not listed, then select Add library: JUnit and click
Next. Select JUnit 4. Click Finish

(e) Click Apply and then OK

2

http://www.cs.ou.edu/~fagg/classes/cs2334/labs/lab4/lab4.zip

Representing Assignments

Below is the UML representation of a set of classes that represent items that are
used to compute your course grade. Your task is to implement this set of classes and
the associated set of JUnit tests.

Driver

+main(args:String[]):void

AssignmentList

-itemList:ArrayList<Assignment>

+AssignmentList()
+addItem(item:Assignment):void
+computeCourseGrade():double
+toString():String

Project

-specification:String
-dataFile:String

+Project(name:String, month:int,
 day:int, hour:int, minute:int,
 specification:String, dataFile:String)
+toString():String

Lab

-specification:String

+Lab(name:String, month:int,
 day:int, hour:int, minute:int,
 specification:String)
+toString():String

Assignment

-name:String
-month:int
-day:int
-hour:int
-minute:int
-score:double
-totalPoints:double
-totalWeight:double

+Assignment(name:String, month:int,
 day:int, hour:int, minute:int)
+getName():String
+getMonth(): int
+getDay(): int
+getHour(): int
+getMinute(): int
+getScore():double
+getTotalPoints():double
+getTotalWeight():double
+setScore(score:double):void
+setTotalPoints(points:double):void
+setTotalWeight(weight:double):void
+toString():String

*

The line from Lab to Assignment indicates that a Lab is-a Assignment. You
should use inheritance to capture this relationship. Likewise, for the Project and
Assignment classes.

3

The line from AssignmentList to Assignment indicates that AssignmentList has-a
Assignment. Observe that there is an itemList attribute (instance variable) in the
middle section of the AssignmentList box. Other than including this attribute, there
is nothing special to be done for a has-a relationship. The “*” on this relationship
indicates that the AssignmentList can have any number of Assignment objects. This
fact is captured in the AssignmentList through the use of the ArrayList of Assignment
(this is the meaning of the ArrayList<Assignment> notation in the type definition).

How much a particular Assignment contributes to your course grade is determined
by three properties:

1. score is the number of points that you have received on the assignment,

2. totalPoints is the number of points that are possible for the assignment, and

3. totalWeight is the weight of this Assignment relative to other assignments.

AssignmentList.computeCourseGrade() returns your score for the class based on
the list of assignments. In particular:

return =

∑n−1
i=0 (totalWeighti × scorei/totalPointsi)∑n−1

i=0 totalWeighti

where n is the total number of Assignments in the list, and totalWeighti refers to
the totalWeight of the ith Assignment. If n = 0, then the returned course grade
must be zero.

Lab 4: Specific Instructions

1. We have provided a complete implementation of the AssignmentTest class, and
partial implementations of the AssignmentList and Driver classes.

2. Create a new Java class for each of the Assignment, Lab and Project classes,
as described in the UML diagram.

� Be sure that the class name is exactly as shown

� You must use the default package, meaning that the package field must
be left blank when you create the class

3. Implement the designated attributes and methods for each class:

4

� Use the same spelling and visibility for instance variables and method
names as shown in the UML

� Do not add functionality to the classes beyond what has been specified

� Don’t forget to document as you go!

4. Assignment.toString(): for a Assignment item by the name of “Unit Testing”,
a month of 12, day of 1, hour of 23, minutes of zero, score of 0.78, totalPoints of
0.99 and totalWeight of 0.30, toString() must return a String in the following
format:

U n i t T e s t i n g (d a t e : 12−01 at 23 :00) : s c o r e = 0 . 7 8 ; t o t a l P o i n t s = 0 . 9 9 ; t o t a l W e i g h t = 0.30

Note that each of month, day, hour and minute must be represented using
exactly two digits, and that the score, totalPoints and totalWeight must have
exactly two digits following the decimal point. The location and number of
spaces must also match this format.

5. Lab.toString(): for the same Unit Testing object as above and a specification
of “UnitTesting.pdf”, toString() must return a String in the following format:

U n i t T e s t i n g (d a t e : 12−01 at 23 :00) : s c o r e = 0 . 7 8 ; t o t a l P o i n t s = 0 . 9 9 ; t o t a l W e i g h t = ←↩
0 . 3 0 ; s p e c i f i c a t i o n = U n i t T e s t i n g . pdf

Note that in the box above, the left arrow character and the following newline
are not part of the returned String (they were added so that the String would
fit in this document).

This toString() method must make use of the Assignment.toString() method.

6. Project.toString(): for the same Unit Testing object as above, and a specifica-
tion of “UnitTesting.pdf” and dataFile of “Snacks.csv”, toString() must return
a String in the following format:

U n i t T e s t i n g (d a t e : 12−01 at 23 :00) : s c o r e = 0 . 7 8 ; t o t a l P o i n t s = 0 . 9 9 ; t o t a l W e i g h t = ←↩
0 . 3 0 ; s p e c i f i c a t i o n = U n i t T e s t i n g . pdf ; d a t a f i l e = S n a c k s . csv

This toString() method must make use of the Assignment.toString() method.

7. Examine our AssignmentList.toString() implementation. It returns a String
that is a concatenation of all of the individual items in the list, with a newline

5

character (“\n”) after each item. The order of the items is the same order in
which they were added to the AssignmentList.

8. Create JUnit classes to thoroughly test all of your code (called ProjectTest,
LabTest and AssignmentListTest)

� You need to convince yourself that all of your primary classes are covered
and that they are working properly

� We will test your code with a separate set of unit tests

Final Steps

1. Generate Javadoc using Eclipse.

� Select Project/Generate Javadoc...

� Make sure that your lab4 project is selected, as are all of your Java files

� Select your doc directory

� Select Private visibility

� Use the default destination directory

� Click Finish

2. Open the lab4/doc/index.html file using your favorite web browser or Eclipse
(double clicking in the package explorer will open the web page). Check to
make sure that all of your classes are listed and that all of your documented
methods have the necessary documentation.

3. If you complete the above instructions during lab, you may have your imple-
mentation checked by one of the TAs.

Submission instructions

� All required components (source code and compiled documentation) are due
at 7pm on Saturday, September 16)

Submission must be done through the Web-Cat server.

� Use the same submission process as you used in lab 1. You must submit your
implementation to the Lab 4: Inheritance area on the Web-Cat server.

6

Hints

� See the API for ArrayList

� See the method String.format()

7

Rubric

The project will be graded out of 100 points. The distribution is as follows:

Correctness/Testing: 45 points

The Web-Cat server will grade this automatically upon submission. Your code
will be compiled against a set of tests (called Unit Tests). These unit tests will
not be visible to you, but the Web-Cat server will inform you as to which tests
your code passed/failed. This grade component is a product of the fraction of
our tests that your code passes and the fraction of your code that is covered
by your tests. In other words, your submission must perform well on both
metrics in order to receive a reasonable grade.

Style/Coding: 20 points

The Web-Cat server will grade this automatically upon submission. Every
violation of the Program Formatting standard described in Lab 1 will result in
a subtraction of a small number of points (usually two points). Looking at your
submission report on the Web-Cat server, you will be able to see a notation
for each violation that describes the nature of the problem and the number of
subtracted points.

Design/Readability: 35 points

This element will be assessed by a grader (typically sometime after the lab
deadline). Any errors in your program will be noted in the code stored on
the Web-Cat server, and two points will be deducted for each. Possible errors
include:

� Non-descriptive or inappropriate project- or method-level documentation
(up to 10 points)

� Missing or inappropriate inline documentation (2 points per violation; up
to 10 points)

� Inappropriate choice of variable or method names (2 points per violation;
up to 10 points)

� Inefficient implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

� Incorrect implementation of an algorithm (minor errors: 2 points each;
up to 10 points)

8

If you do not submit compiled Javadoc for your project, 5 points will be de-
ducted from this part of your score.

Note that the grader may also give warnings or other feedback. Although
no points will be deducted, the issues should be addressed in future submis-
sions(where points may be deducted).

Bonus: up to 5 points

You will earn one bonus point for every two hours that your assignment is
submitted early.

Penalties: up to 100 points

You will lose ten points for every minute that your assignment is submitted
late. For a submission to be considered on time, it must arrive at the server by
the designated minute (and zero seconds). For a deadline of 9:00, a submission
that arrives at 9:00:01 is considered late (in this context, it is one minute late).

After 15 submissions to Web-Cat, you will be penalized one point for every
additional submission.

For labs, the server will continue to accept submissions for three days after the
deadline. In these cases, you will still have the benefit of the automatic feedback.
However, beyond ten minutes late, you will receive a score of zero.

The grader will make their best effort to select the submission that yields the
highest score.

9

