Project 5: Sensor Models
Questions?
Project 4

• Turn in using subversion
• Demos by Friday
Math on the Microcontrollers

- Inexpensive microcontrollers:
 - Do have hardware for integer math operations
 - **Do not** have hardware for floating point math. Instead, floating point operations are performed by functions (this is hidden from you)

- When time is important (in particular, for a control loop), we strive to do as much with integers as possible. But, one must be cautious...
Integers

• Division: lose the remainder

• Multiplication, addition, subtraction: must make sure that we do not end up with a value that does not fit in the size of integer that we are using

• We must worry about both for the intermediate values of a computation as well as the final values.
int8_t a = 5;
int8_t b = 7;
int8_t c = a / b;

What is c?
Division

```c
int8_t a = 5;
int8_t b = 7;
int8_t c = a/b;

c = 0
```
Addition

```c
int8_t a = 125;
int8_t b = 115;
int8_t c = a + b;
```

What is c?
Addition

```c
int8_t a = 125;
int8_t b = 115;
int8_t c = a + b;

c = -16
```
Mixing Operations

```c
int8_t a = 125;
int8_t b = 115;
int8_t c = (a + b)/4;
```

What is c?
Mixing Operations

```c
int8_t a = 125;
int8_t b = 115;
int8_t c = (a + b)/4;
```

c = -4

The intermediate value matters!
Why Not Pick the Largest Integer?

We could solve the overflow problem (in part) by picking the biggest available integer (int32_t)…

• Our microcontrollers can only work with 8 bits at a time
• To add two int32_t variables together requires 8 separate steps to pull these variables from memory in order to add them (and another 4 steps to write to memory)

• The lesson: always pick the size that is just right
Performing Floating Point Operations

int16_t a = 150;

How do we multiply a by 0.75?
Performing Floating Point Operations

```c
int16_t a = 150;
int16_t b = (a * 75) / 100;
```
Performing Floating Point Operations

```
int16_t a = 150;
int16_t b = (a * 75) / 100;
```

But remember: a*75 must fit within an int16_t!
Fixed-Point Mathematics

• Instead of using an integer variable to represent units of “1”, we use the integer to represent units of “10ths” or “100ths” (or smaller)

• So, we can write:

```c
int16_t a = 5;
```

to mean that a is capturing a value of 0.05
Addition Works

```c
int16_t a = 5;       // 0.05
int16_t b = 130;     // 1.3
int16_t c = a + b;   // = 1.35
```
Multiplication

```c
int16_t a = 5;       // 0.05
int16_t b = 130;     // 1.3
int16_t c = a * b;
```

What is c?
Multiplication

```c
int16_t a = 5; // 0.05
int16_t b = 130; // 1.3
int16_t c = a * b; // 6.50 ??
```
Multiplication

```
int16_t a = 5;  // 0.05
int16_t b = 130; // 1.3
int16_t c = a * b / 100; // 0.06
```

Must take into account the extra factor of 100
Programming Embedded Systems

The book has a slightly different take on this:

• Instead of a variable representing a value in units of 10ths or 100ths, the variable represents the value in units of 2^{-k}

• So, in a “16.8” representation (where k=8):
 • A value of 1 means 1/256
 • A value of 2 means 2/256
 • A value of 512 means 2
Programming Embedded Systems

Come with questions on Thursday …
Project 5: Sensor Models

• Derive a sensor model given the data that you have collected
• Code: create a function that returns a calibrated distance
• Collect data and analyze
Component 1: Sensor Model

- Given the data you have collected, design a function that will return a distance in mm given the raw analog value that you read

- Approximate with a simple function
 - We won’t be able to capture all points perfectly
 - Capture the “most important” ones best & the others less well
 - In our case, the most important ones correspond to the distances at 5cm and slightly above
Component 2: Code

Functions to implement:

• `uint16_t read_distance(Sensor side)`
 • Read from one of the two sensors & return a calibrated distance value
 • Must use integer math

• `main()`
 • Repeatedly sample the two sensors & print out the distances.
Component 3: Data Collection and Analysis

• At least 5 samples each for: 5, 6, 8, 10, 14, 20, 30, 40, 60, 80 cm.

• Plot:
 • Sensed distance as a function of distance (mm)
 • One set of points for each of two sensors
Next Time

Serial communication