Control of Time-Varying Behavior

Can often express a “mission” in terms of a sequence of sub-tasks (or a plan)

• But: we also want to handle contingencies when they arrive

Finite state machines are a simple way of expressing such plans and contingencies
Finite State Machines (FSMs)

Pure FSM form is composed of:

- A set of states
- A set of possible inputs (or events)
- A set of possible outputs (or actions)
- A transition function:
 - Given the current state and an input: defines the output and the next state
Finite State Machines (FSMs)

States:

• Represent all possible “situations” that must be distinguished
• At any given time, the system is in exactly one of the states
• There is a finite number of these states
Finite State Machines (FSMs)

An example: a 3-bit counter that increments when “count” input is received

- States: ?
Finite State Machines (FSMs)

An example: a counter

• States: the different combinations of the digits: 000, 001, 010, … 111

• Inputs: ?
Finite State Machines (FSMs)

An example: a counter

• Inputs (events):
 – Only one: “count”
 – We will call this “C”

• Outputs: ?
Finite State Machines (FSMs)

An example: a counter

- Outputs: same as the set of states

- Transition function: ?
Finite State Machines (FSMs)

An example: a counter

- Transition function:
 - On the count event, transition to the next highest value
FSM Example: Synchronous Counter

A Graphical Representation:

A set of states
FSM Example: Synchronous Counter

A transition

C/001

000 → 001

111

011

010

100

101

110
FSM Example: Synchronous Counter

A transition

The event
FSM Example: Synchronous Counter

A transition

The output
FSM Example: Synchronous Counter

A transition

The output: The Zyante book calls these “Mealy Actions”
FSM Example: Synchronous Counter

The next transition

000 → 001

001 → 010

010 → 011

011

100

101

110

111
FSM Example: Synchronous Counter

The next transition

000 → 001 → 010 → 011

C/001 → C/010 → C/011
FSM Example: Synchronous Counter

The full transition set

000 → 001 (C/001)
001 → 010 (C/010)
010 → 011 (C/011)
011 → 100 (C/100)
100 → 101 (C/101)
101 → 110 (C/110)
110 → 111 (C/111)
111 → 000 (C/000)
FSM Example: Synchronous Counter

Initial condition
Example II: An Up/Down Counter

Suppose we have two events (instead of one): Count up and count down

• How does this change our state transition diagram?
Example II: An Up/Down Counter

From state 000, there are now two possible transitions:

- From 000, an up transition to 001
 - U/001
- From 000, a down transition to 111
 - D/111
Example II: An Up/Down Counter

Likewise for state 001...
Example II: An Up/Down Counter

The full transition set

```
Example transition set:

000 U/000 \rightarrow U/001
000 D/000 \rightarrow D/001
001 U/010 \rightarrow U/011
001 D/010 \rightarrow D/011
010 U/100 \rightarrow U/101
010 D/100 \rightarrow D/101
100 U/110 \rightarrow U/111
100 D/110 \rightarrow D/111
110 U/000 \rightarrow U/001
110 D/000 \rightarrow D/001
111 U/010 \rightarrow U/011
111 D/010 \rightarrow D/011
```
FSMs and Control

How do we relate FSMs to Control?

• States are ?
FSMs and Control

How do we relate FSMs to Control?

• States are our memory of recent inputs

• Inputs are?
FSMs and Control

How do we relate FSMs to Control?

• States are our memory of recent inputs

• Inputs are some processed representation of what the sensors are observing

• Outputs are?
FSMs and Control

How do we relate FSMs to Control?

• States are our memory of recent inputs

• Inputs are some processed representation of what the sensors are observing

• Outputs are the control actions
 – These are typically “high level” actions: e.g., set the goal orientation to 125 degrees
FSMs: A Control Example

Suppose we have a vending machine:

- Accepts dimes and nickels
- Will dispense one of two things once $.20 has been entered: Jolt or Buzz Water
 - The “user” requests one of these by pressing a button
- Ignores select if < $.20 has been entered
- Immediately returns any coins above $.20
Vending Machine FSM

What are the states?
Vending Machine FSM

What are the states?

- $0
- $.05
- $.10
- $.15
- $.20
Vending Machine FSM

What are the inputs/events?
Vending Machine FSM

What are the inputs/events?

- Input nickel (N)
- Input dime (D)
- Select Jolt (J)
- Select Buzz Water (BW)
Vending Machine FSM

What are the outputs?
Vending Machine FSM

What are the outputs?

• Return nickel (RN)
• Return dime (RD)
• Dispense Jolt (DJ)
• Dispense Buzz Water (DBW)
• Nothing (Z)
Vending Machine Design

What is the initial state?
Vending Machine Design

What is the initial state?

- $S = 0$
Vending Machine Design

What can happen from $S = \$0$?

<table>
<thead>
<tr>
<th>Event</th>
<th>Next State</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vending Machine Design

What can happen from $S = $0?

What does this part of the diagram look like?

<table>
<thead>
<tr>
<th>Event</th>
<th>Next State</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>$.05</td>
<td>Z</td>
</tr>
<tr>
<td>D</td>
<td>$.10</td>
<td>Z</td>
</tr>
<tr>
<td>J</td>
<td>$0</td>
<td>Z</td>
</tr>
<tr>
<td>BW</td>
<td>$0</td>
<td>Z</td>
</tr>
</tbody>
</table>
Vending Machine Design

A piece of the state diagram:
Vending Machine Design

What can happen from $S = 0.05$?

<table>
<thead>
<tr>
<th>Event</th>
<th>Next State</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vending Machine Design

What can happen from $S = 0.05$?

What does the modified diagram look like?

<table>
<thead>
<tr>
<th>Event</th>
<th>Next State</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>$.10</td>
<td>Z</td>
</tr>
<tr>
<td>D</td>
<td>$.15</td>
<td>Z</td>
</tr>
<tr>
<td>J</td>
<td>$.05</td>
<td>Z</td>
</tr>
<tr>
<td>BW</td>
<td>$.05</td>
<td>Z</td>
</tr>
</tbody>
</table>
Vending Machine Design

A piece of the state diagram:

- States: 0, $.05$, $.10$, $.15$
- Transitions:
 - x/Z to 0
 - J/Z, BW/Z to $.05$
 - D/Z, N/Z to $.10$
 - D/Z, N/Z to $.15$
 - N/Z to $.05$, BW/Z to $.10$, J/Z to $.15$
Vending Machine Design

What can happen from $S = $0.10?

<table>
<thead>
<tr>
<th>Event</th>
<th>Next State</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vending Machine Design

What can happen from $S = $0.10?

<table>
<thead>
<tr>
<th>Event</th>
<th>Next State</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>$.15</td>
<td>Z</td>
</tr>
<tr>
<td>D</td>
<td>$.20</td>
<td>Z</td>
</tr>
<tr>
<td>J</td>
<td>$.10</td>
<td>Z</td>
</tr>
<tr>
<td>BW</td>
<td>$.10</td>
<td>Z</td>
</tr>
</tbody>
</table>
Vending Machine Design

A piece of the state diagram:
Vending Machine Design

What can happen from $S = \$0.15$?

<table>
<thead>
<tr>
<th>Event</th>
<th>Next State</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vending Machine Design

What can happen from $S = $0.15?

<table>
<thead>
<tr>
<th>Event</th>
<th>Next State</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>$.20</td>
<td>Z</td>
</tr>
<tr>
<td>D</td>
<td>$.20</td>
<td>RN</td>
</tr>
<tr>
<td>J</td>
<td>$.15</td>
<td>Z</td>
</tr>
<tr>
<td>BW</td>
<td>$.15</td>
<td>Z</td>
</tr>
</tbody>
</table>
A piece of the state diagram:
Finally: what can happen from $S = \$0.20$?

<table>
<thead>
<tr>
<th>Event</th>
<th>Next State</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vending Machine Design

Finally, what can happen from $S = $0.20?

<table>
<thead>
<tr>
<th>Event</th>
<th>Next State</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>$.20</td>
<td>RN</td>
</tr>
<tr>
<td>D</td>
<td>$.20</td>
<td>RD</td>
</tr>
<tr>
<td>J</td>
<td>$0</td>
<td>DJ</td>
</tr>
<tr>
<td>BW</td>
<td>$0</td>
<td>DBW</td>
</tr>
</tbody>
</table>
Vending Machine Design

The complete state diagram:
• End for day…
Finite State Machines
FSMs and Control

How do we relate FSMs to Control?

• States are?
FSMs and Control

How do we relate FSMs to Control?

• States are our memory of recent inputs

• Inputs are ?
FSMs and Control

How do we relate FSMs to Control?

• States are our memory of recent inputs

• Inputs are some processed representation of what the sensors are observing

• Outputs are?
FSMs and Control

How do we relate FSMs to Control?
• States are our memory of recent inputs

• Inputs are some processed representation of what the sensors are observing

• Outputs are the control actions
A Robot Control Example

Consider the following task:

• The robot is to move toward the first beacon that it “sees”
• The robot searches for a beacon in the following order: right, left, front
• Once beacon is found, move toward it and stop once the beacon is reached

What is the FSM representation?
Robot Description

Mobile robot with sensor turret on top

- Mobile robot turns take time
- Turret turns are relative to the mobile base and do not take time
Events

- Turn complete (TC)
- Beacon (B)
- No Beacon (NB)
Actions

- Look left (LL): turn turret to be facing left (relative to the mobile base)
- Look right (LR)
- Look forward (LF)
- Turn left (TL): turn robot base by 90 degrees to the left
- Turn right (TR)
- Move forward (F)
Robot Control Example II

Consider the following task:
• The robot must lift off to some altitude
• Translate to some location
• Take pictures
• Return to base
• Land
• At any time: a detected failure should cause the craft to land

What is the FSM representation?
FSMs As Controllers

Must bridge the gap between the FSM and the low- and mid-level controllers

• Events:
 – Abstraction of sensor or internal state

• Actions:
 – Modify mid- or low-level control behavior
FSMs in C

State state = STATE_0; // Initial state
while(1) {
 <do some processing of the sensory inputs>
 switch(state) {
 case STATE_0:
 <handle state 0>
 break;
 case STATE_1:
 <handle state 1>
 break;
 case STATE_2: ...
 }
}
FSMs in C (some other possibilities)

State state = STATE_0; // Initial state
while(1) {
 <do some processing of the sensory inputs>
 switch(state) {
 case STATE_0:
 <handle state 0>
 break;
 :
 default:
 <handle default case>
 break;
 }
 <do some low-level control>
}

Andrew H. Fagg: Embedded Real-Time Systems: FSMs
Handling Each State

• You will need to provide code that handles the event processing for each state

• Specifically:
 – You need to handle each event that can occur
 – For each event, you must specify:
 • What action is to be taken
 • What the next state is
Handling Each State

In our vending machine example:

• Events are easy to describe (only a few things can happen)

• It is convenient in this case to also “switch” on the event
FSMs in C: Processing for Individual States

case STATE_10cents:
 // $.10 has already been deposited
 switch(event) {
 case EVENT_NICKEL: // Nickel
 state = STATE_15cents; // Transition to $.15
 break;
 case EVENT_DIME: // Dime
 state = STATE_20cents; // Transition to $.2
 break;
 case EVENT_JOLT: // Select Jolt
 case EVENT_BUZZ: // Select Buzzwater
 display_NOT_ENOUGH();
 break;

 case EVENT_NONE: // No event
 break; // Do nothing
 }

};
break;
Handling Each State

Some events do not fall neatly into one of several categories

• This precludes the use of the “switch” construct for events

• For example: an event that occurs when our hovercraft reaches a goal orientation

• For these continuous situations, we typically use an “if” construct …
FSMs in C: Processing for Individual States

```c
case STATE_MISSION_PHASE_3:
    if(heading_error < 100 &&
        heading_error > -100)
    {
        // Accelerate forward!
        forward_thrust = 126;
        state = STATE_MISSION_PHASE_4;
    }
    break;
```

FSMs in C: Processing for Individual States

```c
: case STATE_MISSION_PHASE_4:
   if(distance_left < 200 ||
       distance_right < 200)
   {
      // Brake!
      forward_thrust = 0;
      middle_thrust_magnitude(300);
      middle_thrust_dir(BRAKE);
      state = STATE_MISSION_PHASE_5;
      counter = 0;  // Reset the clock
   }
   break;
: 
```
FSMs in C: Processing for Individual States

case STATE_MISSION_PHASE_5:
 if(counter > 20)
 {
 // One second has gone by since we
 // started the brake: Stop the brake

 middle_thrust_magnitude(100);
 middle_thrust_dir(HOVER);
 forward_thrust = 100;
 heading_goal = -900;
 state = STATE_MISSION_PHASE_6;
 }
 break;

REMEMBER: counter is being incremented once per control cycle (outside of the FSM code)
FSM Implementation Notes

• FSM code should not contain delays or waits
 – No `delay_ms()` or `while(…){}`
 – Remember that your FSM code will be called once per control cycle: use “if” to check for an event during that control cycle

• Use LEDs and/or `fprintf()` to indicate current state

• Implement and test incrementally
FSM Implementation Notes

For your project: you will use an enumerated data type to represent your set of states.

• Allows us to be very clear what the possible values are
• Affords type checking by the compiler
FSMs in C: Mixing High and Low-Level Control

State state = STATE_0; // Initial state
while(1) {
 <do some processing of the sensory inputs>
 switch(state) {
 case STATE_0:
 <handle state 0>
 break;
 :
 default:
 <handle default case>
 break;
 }
 <do some low-level control>
}
FSMs in C: Mixing High and Low-Level Control

State state = STATE_0; // Initial state
while(1) {
 <do some processing of the sensory inputs>
 switch(state) {
 case STATE_0:
 <handle state 0>
 break;
 :
 default:
 <handle default case>
 break;
 }
 <do some low-level control>
 pd_control() // We need to call this every
 // time through the loop
}
Next Time

• Project 9